Intro to path analysis

Sources. This discussion draws heavily from Otis Dudley Duncan’s Introduction to Structural
Equation Models.

Overview. Our theories often lead us to be interested in how a series of variables are
interrelated. It is therefore often desirable to develop a system of equations, i.e. a model, which
specifies all the causal linkages between variables.For example, status attainment research asks
how family background, educational attainment and other variables produce socio-economic
status in later life. Here is one of the early status attainment models (see Hauser, Tsai, Sewell
1983 for a discussion):
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Figure 2. Sewell-Haller-Ohlendorf Model of Educational and Occupational Attainment :
Source: William H. Sewell, Archibald O. Haller and George W. Ohlendorf, The Educational and Early

Occupational Status Attainment Process: Replication and Revision. American Sociological Review
35 (December 1970): 1023.

Among the many implications of this model are that Parents” Socio-Economic Status (X7)
indirectly affects the Educational Attainment (X2) and Occupational Aspirations (X3) of
children. These, in turn, directly affect children’s Occupational Attainment (X1). In other words,
higher parental SES helps children to become better educated and gives them higher occupational
aspirations, which in turn leads to greater occupational achievement. Our earlier discussion of
the Logic of Causal Order, combined with the current discussion of Path Analysis, can help us
better understand how models such as the above work.

Review of key lessons from the logic of causal order. In the logic of causal order, we
learned that the correlation between two variables says little about the causal relationship
between them. This is because the correlation between two variables can be due to
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e the direct effect of one variable on another

e indirect effects; one variable affects another variable which in turn affects a third
e common causes, e.g. X affects both Y and Z. This is spurious association

e correlated causes, e.g. X is a cause of Z and X is correlated with Y

e reciprocal causation; each variable is a cause of the other

Hence, a correlation can reflect many non-causal influences. Further, a correlation can’t tell you
anything about the direction of causality.

At the same time, only looking at the direct effect of one variable on another may also not be
optimal. Direct effects tell you how a 1 unit change in X will affect Y, holding all other variables
constant. However, it may be that other variables are not likely to remain constant if X changes,
e.g. a change in X can produce a change in Z which in turn produces a change in Y. Put another
way, both the direct and indirect effects of X on Y must be considered if we want to know what
effect a change in X will have on Y, i.e. we want to know the total effects (direct + indirect).

We have done all this conceptually. Now, we will see how, using path analysis, this is done
mathematically and statistically. We will show how the correlation between two variables can be
decomposed into its component parts, i.e. we will show how much of a correlation is due to
direct effects, indirect effects, common causes and correlated causes. We will further show how
each of the structural effects in a model affects the correlations in the model.

Path analysis terminology. Consider the following diagram:
u

J

/‘ X2

X1 \ X4 & w
1
!

In this diagram,

e X1 isan exogenous variable. Exogenous variables are those variables whose causes are not
explicitly represented in the model. Exogenous variables are causally prior to all dependent
variables in the model. There is no causal ordering of the exogenous variables. There can be
more than one exogenous variable in a model. For example, if there was a 2-headed arrow
linking X1 and X2 instead of a 1-headed arrow, then X1 and X2 would both be exogenous.

e Conversely, X2, X3, and X4 are endogenous variables. The causes of endogenous variables
are specified in the model.

e Exogenous variables must always be independent variables. However, endogenous variables
can be either dependent or independent. For example, X1 is a cause of X2, but X2 is itself a
cause of X3 and X4.

Intro to path analysis—Page 2




e U, Vv, and w are disturbances, or, if you prefer, the residual terms. Many notations are used for
disturbances; indeed, sometimes no notation is used at all, there is just an arrow coming in
from out of nowhere. &5, €3, and &4 would also be a good notation, given our past practices.

e The one way arrows represent the direct causal effects in the model, also known as the
structural effects. Sometimes, the names for these effects are specifically labeled, but other
times they are left implicit. The structural equations in the above diagram can be written as

Xz ::B21X1 +Uu
Xs :/lexl +/832X2 +V
X4 =,B41X1 +ﬂ4zxz +IB43X3 +w

e Note that we use 2 subscripts for each structural effect. The first subscript stands for the DV,
the second stands for the IV. When there are multiple equations, this kind of notation is
necessary to keep things straight. Note, too, that intercepts are not included. Discussions of
path analysis are simplified by assuming that all variables are “centered,” i.e. the mean of the
variable has been subtracted from each case. Finally, note that the paths linking the
disturbances to their respective variables are set equal to 1.

e In the above example, each IV was affected by all the other predetermined variables, i.e.
those variables which are causally prior to it. We refer to such a model as being fully
recursive, for reasons we will explain later. There is no requirement that each 1V be affected
by all the predetermined variables, of course. For example, B43 could equal zero, in which
case that path would be deleted from the model. Indeed, it is fairly easy to include paths in a
model; the theoretically difficult part is deciding which paths to leave out.

Determining correlations and coefficients in a path model using standardized variables.
We will now start to examine the mathematics behind a path model. For convenience, WE
WILL ASSUME THAT ALL VARIABLES HAVE A MEAN OF 0 AND A VARIANCE OF 1,
i.e. are standardized. This makes the math easier, and it is easy enough later on to go back to
unstandardized variables. Recall that, when variables are standardized,

E(X:) = V(Xy) = 1,
E(X1X2) = COV(X1,X2) = p12 (Where p1, is the population counterpart to the sample estimate rq7)

Also, we assume (at least for now) that the disturbance in an equation is uncorrelated with any of
the IVs in the equation. (Note, however, that the disturbance in each equation has a nonzero
correlation with the dependent variable in that equation and (in general) with the dependent
variable in each “later” equation.)

Keeping the above in mind, if we know the structural parameters, it is fairly easy to compute the
underlying correlations. Perhaps more importantly, it is possible to decompose the correlation
between two variables into the sources of association noted above, e.g. correlation due to direct
effects, correlation due to indirect effects, etc. And, of course, if we know the correlations, we
can compute the structural parameters, although this is somewhat harder to do by hand.
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There are a couple of ways of doing this. The first, Sewell Wright’s rule, is very diagram-
oriented and is perhaps more intuitive to most people once you understand it. The normal
equations approach is more mathematical; while perhaps less intuitive, it is less prone to
mistakes. | find that using both together is often helpful.

Sewell Wright's multiplication rule: To find the correlation between Xy and X, where X;
appears “later” in the model,

e Dbegin at X; and read back to X; along each distinct direct and indirect (compound) path,
forming the product of the coefficients along that path. (This will give you the correlation
between X and X that is due to the direct and indirect effects of X;, on Xj)

e After reading back, read forward (if necessary), but only one reversal from back to forward is
permitted. (This will give you correlation that is due to common causes.)

e A double-headed arrow may be read either forward or backward, but you can only pass
through 1 double-headed arrow on each transit. (This will give you correlation due to
correlated causes)

e If you pass through a variable, you may not return to it on that transit.

e Sum the products obtained for all the linkages between Xj and Xy. (The main trick to using
Wright’s rule is to make sure you don’t miss any linkages, count linkages twice, or make
illegal double reversals.) This will give you the total correlation between the 2 variables.

Normal equations. To get the normal equations, each structural equation is multiplied by its
predetermined variables, and then expectations are taken. If the structural parameters are known,
simple algebra then yields the correlations. We’ll show how to use normal equations in the more
complicated example.

To illustrate path analysis principles, we’ll first go over a generic and complicated example.
We’ll then present a fairly simple substantive (albeit hypothetical) example similar to what we’ve
discussed before.

Generic, Complicated Example (pretty much stolen from Duncan). We will illustrate both
the Wright rule and the use of normal equations for each of the 3 structural equations in the
model presented earlier:

L
x1/ \ x4 — w
]
A

Intro to path analysis—Page 4



(1)  X2. For X2, the structural equation is
Xz = ﬂ21X1 +u

The only predetermined variable is X1. Hence, if we multiply both sides of the above equation
by X1 and then take expectations, we get the normal equation

E(X,X,)= ﬂ21E(X12)+ E(Xu) =
Pu = Pn

NOTE: How did we get from the structural equation to the normal equation? First, we multiplied both
sides of the structural equation by X1, and then we took the expectations of both sides, i.e.

X, =By X +U=>
X, X, = B X2+ X u=>
E(X,X,) = B E(X2)+E(Xu) =
P =P

Again, remember that when variables are standardized, E(X,?) = 1 and E(X;X,) = p1, (Where p, is the
population counterpart to the sample estimate ry,). Also remember that we are assuming that the
disturbance in an equation is uncorrelated with any of the IVs in the equation, ergo E(X;u) = 0.

Hence, as we have seen before, in a bivariate regression, the correlation is the same as the
standardized regression coefficient. Also, all of the correlation between X1 and X2 is causal.

SW Rule: Go back from X2 to X1.
(2)  X3. For X3, the structural equation is
Xy =Py X+ Py Xy, +V

There are two predetermined variables, X1 and X2. Taking each in turn, the normal equations
are

E(Xlxs) = ,leE(Xlz) +ﬂ32E(X1X2) + E(le) =
Piz = Par+ B Pi
= 1331 +ﬁ32,821

(Remember that 321 = p12). As the above makes clear, there are two sources of correlation
between X1 and X3:
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€)) There is a direct effect of X1 on X3 (represented in 331)

u

Y

X2
X1 %\ X4 & w

X3
/|\
v

\
\

SW Rule: Go back from X3 to X1.

(b)  Anindirect effect of X1 operating through X2 (reflected by B32B21). All of the
association between X1 and X3 is causal.

u

Y

X2

X1 %\ X4&— w
X3

/|\

SW Rule: Go back from X3 to X2, and then back from X2 to X1.

\
y

NOTE: Recall that the sum of a variable’s direct effect and its indirect effects is known as its
total effect. So, in this case, the total effect of X1 on X3is £, + £, 5., -

Doing the same thing for X2 and X3, we get
E(X,X;) = BLE(X,X,) +ﬂ32E(x22) +E(Xyv) =
Pz = PPy + Pa
:ﬁ31ﬂZl+ﬂ32

Again, as the above makes clear, there are two sources of correlation between X2 and X3:
@ There is a direct effect of X2 on X3 (represented in B3).

SW Rule: Go back from X3 to X2.
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(b) But, there is also correlation due to a common cause, X1 (reflected by B3121). Hence,
part of the correlation between X2 and X3 is spurious.

!
Xl/\% x4 é— w
T

SW Rule: Go back from X3 to X1, go forward from X1 to X2.

(3)  X4. For X4, the predetermined variables are X1, X2, and X3. The structural equation is
Xy =BuXi+LpX,+ L Xy +W
The normal equations are, first, for X1,
E(X,X,)= :841E(X12) + BLE(X X,) + BE(X X5) + E(X,w) =
Par = B+ BuaPr2 + BispPia

=B+ BiLo + Bis(Bay + Bao )
= Bu+ PuaPor + PP+ Pus PP

This shows there are 4 sources of association between X1 and X4:
(a) Association due to the direct effect of X1 on X4 (B41)

o
S

X3
/|\
\"
SW Rule: Go back from X4 to X1.
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(b) Association due to an indirect effect: X1 affects X2 which then affects X4 (B42B21)

u

Y

X2

X1 X4 & w
\ s %
/|\

SW Rule: Go back from X4 to X2, go back from X2 to X1.

(c) Association due to another indirect effect: X1 affects X3 which then affects X4

(Ba3Ba1)

u

\”
X1 %\ xaé— w
T

SW Rule: Go back from X4 to X3, go back from X3 to X1.

\
)

(d) Association due to yet another indirect effect: X1 affects X2, which then affects X3,
which then affects X4 (B3B32B21)

u

\’
x1 %\ x4 é— w
T

SW Rule: Go back from X4 to X3, back from X3 to X2, back from X2 to X1.

\
)

Note that you sum (b), (c) and (d) to get the total indirect effect of X1 on X4. Note too that all of
the correlation between X1 and X4 is causal.
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The normal equations for X2 and X4 are
E(X2X4) = ﬁ41E(X2X1) +:B42E(X22) +ﬁ43E(X2X3) + E(sz) =
Paz = BuPro + Puz + BuzPos

= BB+ Bi + Bis(Bso + B fBor)
= BB+ Pua + PPz + BisPsPau

This shows there are 4 sources of association between X2 and X4:

(a) Association due to X1 being a common cause of X2 and X4 (B41B21)

c

SW Rule: GO back from X4 to X1, go forward from X1 to X2.

(b) Association due to the direct effect of X2 on X4 (B42)

SW Rule: Go back from X4 to X2.

(c) Association due to the indirect effect of X2 affecting X3 which in turn affects X4
(B4sPs32)

u

J

X2
X1 %\ X4 é— w
X3
/I\
\

SW Rule: Go back from X4 to X3, go back from X3 to X2.

\
\
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(d) Association due to X1 being a common cause of X2 and X4: X1 directly affects X2
and indirectly affects X4 through X3 (B43B3121).

!
/xz
xl\$> xaé— w

SW Rule: Go back from X4 to X3, back from X3 to X1, forward from X1 to X2.

Note that you sum (a) and (d) to get the correlation due to common causes. This represents
spurious association, while (b) + (c) represents causal association.

The normal equations for X3 and X4 are,
E(X3X4) = 1841E(X3X1) +ﬁ42E(X3X2) +:B43E(X§) + E(X3W) =
Paz = PPz + BiaPos + P

= B (B + B 1) + Biz(Bay + BarBor) + B
= ,Bzuﬁsl + ﬂ41:8321321 + ﬂ4zﬂ32 + 134213311521 + ﬂ43

This shows there are 5 sources of association between X3 and X4:

(a) Association due to X1 being a common cause of X3 and X4 (B41P31)

u

J

X3
/I\
v

SW Rule: Go back from X4 to X1, go forward from X1 to X3.
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(b) Association due to X1 being a common cause of X3 (by first affecting X2, which in
turn affects X3) and X4 (B41P21 B32)

x1/ X4&— w
\ XS%
!

SW rule: Go back from X4 to X1, forward from X1 to X2, forward from X2 to X3.

(c) Association due to X2 being a common cause of X3 and X4 (B42B32)

x1/ X4 & w
\ XS%
!

SW Rule: Back from X4 to X2, go forward from X2 to X3.

(d) Association due to X1 being a common cause of X3 and X4: X1 directly affects X3
and indirectly affects X4 through X2 (B42B21P31)-

A

X1 X4 &— w
\ %

X3
/|\
v

SW Rule: Go back from X4 to X2, back from X2 to X1, forward from X1 to X3.
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(e) Association due to X3 being a direct cause of X4 (B43)

SW Rule: Go back from X4 to X3.

Note that you sum (a), (b) (c) and (d) to get the correlation due to common causes. This is the
spurious association. There are no indirect effects of X3 on X4.

In reviewing the above, note that, if there are no double-headed arrows in the model
e If you go back once and then stop, it is a direct effect
e If you go back 2 or more times and never come forward, it is an indirect effect

e If you go back and later come forward, it is correlation due to a common cause

Correlated causes. Suppose that, in the above model, X1 and X2 were both exogenous, i.e.
there was a double-headed arrow between them instead of a 1-way arrow. This would not have
any significant effect on the math, but it would affect our interpretation of the sources of
correlation. Anything involving p1, would then have to be interpreted as correlation due to
correlated causes. Further, we could not always say what effect changes in X1 would have on
other variables, since we wouldn’t know whether changes in X1 would also produce changes in
X2 (unless we have good reasons for believing that that couldn’t be the case, €.g. gender and race
might both be exogeneous variables in a model, but we are pretty confident that changes in one
are not going to produce changes in the other.). That is, with two-headed arrows we often can’t
be sure what the indirect effects are, which also means that we can’t be sure what the total effects
are. Ergo, the fewer 2-headed arrows in a model, the more powerful the model is in terms of the

statements it makes.
@ X2
X1 \ X4 &— w
\ s %

/I\

\Y

For example:

Instead of X1 and X3 being correlated because of the indirect effect of X1 affecting X2 which in
turn affects X3 (which is a causal relationship) X1 and X3 are correlated because of the
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correlated causes of X1 and X2 (which we do not assume to be causal), i.e. X1 is correlated with

a cause of X3.
@ X2
X1 \% X4&— w

Or,
X3

/I\

\Y

Instead of X2 and X3 being correlated because they share a common cause, they are correlated
because of a correlated cause, i.e. X1 is a cause of X3 and X2 is correlated with X1.

SUBSTANTIVE HYPOTHETICAL EXAMPLE (Adapted From the 1995 Soc 593 Exam 2):

A demographer believes that the following model describes the relationship between Income,
Health of the Mother, Use of Infant formula, and Infant deaths. All variables are in standardized
form. The hypothesized value of each path is included in the diagram.

u

N

Mother's Health -.8

%

Infant Formula Usage

T

\Y

Infant Deaths % w
Income

a. Write out the structural equation for each endogenous variable.

MH = B, .Income+u =.7* Income+u
IF =8 wMH+v=—8*MH +v
ID=Bows *MH + B, *IF+Ww=-8*MH -5*IF +w

b. Determine the complete correlation matrix. (Remember, variables are
standardized. You can use either normal equations or Sewell Wright, but you might want to use
both as a double-check.)
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Correlation Sewell-Wright Approach

Mmh,inc = -7 Go back from Mother’s health to Income. (Direct effect of
Income on MH)

ligmn = -.8 Go back from IF to MH. (Direct effect of MH on IF)

MNeine =-.8*.7=-56

Go back from IF to MH, then back from MH to income.
(Indirect effect of Income — Income affects mother’s
health which in turn affects Infant formula usage)

laF = -5+ -.8%.8 = .14

Go back from ID to IF. (Direct effect of Infant formula on
infant deaths)

Then, go back from ID to MH, then go forward from MH to
IF. (Mother’s health is a common cause of both Infant
formula usage and infant deaths)

Note that, even though the direct effect of infant formula
usage on infant deaths is negative (which means that
using formula reduces infant deaths) the correlation
between infant formula usage and infant deaths is
positive (which means that those who use formula are
more likely to experience infant deaths). We discuss this
further below.

lgmy = -8 +-8*-5=-4

Go back from ID to MH. (Direct effect of Mother’s Health
on Infant deaths)

Then, go back from ID to IF to MH. (Indirect effect of
Mother’s health on infant deaths — Mother’s health affects
infant formula usage which in turn affects infant deaths)

lgnc = -.8%.7 + -5*-.8*7 =
-.28

Go back from Infant Death to Mother’s Health, then back
to Income. (Income is an indirect cause of Infant deaths
— Income affects mother’s health which in turn affects
infant deaths.)

Then go back from Infant deaths, then back to Mother’s
Health, then back to Income. (Income is yet again an
indirect cause — Income affects Mother’s Health, which
affects Infant Formula Usage, which affects Infant
Deaths.)
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C. Decompose the correlation between Infant deaths and Usage of Infant formula
into

e Correlation due to direct effects
-.5 (see path from IF to ID)

e Correlation due to common causes
-.8 *-.8 = .64 (Mother’s health is a cause of both IF and ID)

d. Suppose the above model is correct, but instead the researcher believed in and
estimated the following model:

Infant Formula Usage— > Infant Deaths €—— w

What conclusions would the researcher likely draw? Why would he make these mistakes?
Discuss the consequences of this mis-specification.

The correlation between IF and ID is positive, hence, if the above model was estimated,
the expected value of the coefficient would be .14. This would imply that infant formula
usage increases infant deaths, when in reality the correct model shows that it
decreases them. The correlation is positive because of the common cause of Mother’s
health: less healthy mothers are more likely to use infant formula, and they are also
more likely to have higher infant death rates. Belief in the above model could lead to a
reduction in infant formula usage, which would have exactly the opposite effect of what
was intended.
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Appendix: Verifying answers with Stata and SPSS

Stata. We can use Stata to verify we have calculated the correlations correctly. Just give Stata
the correlations we computed by hand and then run the various regressions. If we’ve done
everything right, the regression parameters should come out the same as in the path diagram.
Remember, this is easier if you use the “input matrix by hand” submenu. (Click Data/ Matrices /
Input matrix by hand.)

. matrix input Corr = (1,.7,-.56,-.28\.7,1,-.80,-.40\-.56,-.80,1,.14\-.28,-.40,.14,1)
. matrix input SDs = (1,1,1,1)

. matrix input Means = (0,0,0,0)

. corr2data income mhealth formula death, corr(Corr) mean (Means) sd(SDs) n(100)

(obs 100)

reg mhealth income

Source | SS df MS Number of obs = 100
————————————— e F( 1, 98) = 94.16
Model | 48.5099991 1 48.5099991 Prob > F = 0.0000
Residual | 50.4899995 98 .515204077 R-squared = 0.4900
————————————— o Adj R-squared = 0.4848
Total | 98.9999987 99 .999999986 Root MSE = .71778
mhealth | Coef Std. Err. t P>t [95% Conf. Intervall]
_____________ +________________________________________________________________
income | .7 .0721393 9.70 0.000 .5568419 .8431581
_cons | 6.41e-10 .0717777 0.00 1.000 -.1424405 .1424405

reg formula income mhealth
Source | SS df MS Number of obs = 100
————————————— e ettt T F( 2, 97) = 86.22
Model | 63.3600001 2 31.68 Prob > F = 0.0000
Residual | 35.64 97 .367422681 R-squared = 0.6400
————————————— Fom Adj R-squared = 0.6326
Total | 99.0000001 99 1 Root MSE = .60615
formula | Coef. Std. Err. t P>|t] [95% Conf. Intervall]
_____________ +________________________________________________________________
income | 4.93e-09 .0853061 0.00 1.000 -.1693091 .1693091
mhealth | -.8 .0853061 -9.38 0.000 -.9693091 -.6306909
_cons | -2.31e-09 .0606154 -0.00 1.000 -.1203048 .1203048
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reg death income mhealth formula
Source | SS df MS
_____________ +______________________________
Model | 24.749999 3 8.24999966
Residual | 74.2500011 96 .773437511
_____________ +______________________________
Total | 99.0000001 99 1
death | Coef Std. Err t P>t |
_____________ +________________________________________
income | 1.63e-09 .1237684 0.00 1.000
mhealth | -.8 .1709021 -4.68 0.000
formula | -.5 .1473139 -3.39 0.001
_cons | -6.54e-09 .0879453 -0.00 1.000
* The mis-specified model
reg death formula
Source | SS df MS
_____________ +______________________________
Model | 1.94039993 1 1.94039993
Residual | 97.0596001 98 .990404083
_____________ +______________________________
Total | 99.0000001 99 1
death | Coef Std. Err t P>t |
_____________ +________________________________________
formula | .14 .1000204 1.40 0.165
cons | -5.23e-09 .099519 -0.00 1.000

Number of obs = 100
F( 3, 96) = 10.67
Prob > F = 0.0000
R-squared = 0.2500
Adj R-squared = 0.2266
Root MSE = .87945
[95% Conf. Interval]
-.2456784 .2456784
-1.139238 -.4607621
-.7924158 -.2075842
-.17457 .17457
Number of obs = 100
F( 1, 98) = 1.96
Prob > F = 0.1648
R-squared = 0.0196
Adj R-squared = 0.0096
Root MSE = .99519

[95% Conf. Interval]

-.0584872
-.1974923

.3384872
.1974923

SPSS. We can also use SPSS to verify we have calculated the correlations correctly.

MATRIX DATA VARIABLES =

/JFILE = INLINE / N = 100
/CONTENTS = CORR Mean Stddev.
BEGIN DATA.
1.00
.70 1.00
-.56 -.80 1.00
-.28 -.40 .14 1.00
0 0 0 0
1 1 1 1
END DATA.
* Mhealth Dependent.
REGRESSION matrix = in(*)
/VARIABLES Income MHealth Formula Death
/dependent MHealth
/method enter Income.
Regression
Coefficient$
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .000 .072 .000 | 1.000
INCOME .700 .072 .700 | 9.703 .000

a. Dependent Variable: MHEALTH

Income MHealth Formula Death/ FORMAT =

FREE lower
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* Formula dependent.

REGRESSION matrix = in (%)
/VARIABLES Income MHealth Formula Death
/dependent Formula
/method enter Income MHealth.

Regression
Coefficient$
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .000 .061 .000 | 1.000
INCOME .000 .085 .000 .000 | 1.000
MHEALTH | -.800 .085 -.800 | -9.378 .000

a. Dependent Variable: FORMULA

* Death dependent.

REGRESSION matrix = in (%)
/VARIABLES Income MHealth Formula Death
/dependent Death
/method enter Income MHealth Formula.

Regression
Coefficient$
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.

1 (Constant) .000 .088 .000 | 1.000
INCOME .000 124 .000 .000 | 1.000
MHEALTH | -.800 171 -.800 | -4.681 .000
FORMULA | -.500 .147 -.500 | -3.394 .001

a. Dependent Variable: DEATH

* Mis-specified Death model -- Mother's Health omitted.

REGRESSION matrix = in(*)
/VARIABLES Income MHealth Formula Death
/dependent Death
/method enter Formula.

Regression
Coefficient$
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .000 .100 .000 | 1.000
FORMULA .140 .100 .140 | 1.400 .165

a. Dependent Variable: DEATH

http://www.nd.edu/~rwilliam/xsoc63993/162.pdf
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