BGIM : Maximum Likelihood Estimation Primer
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' q{Maximum Likelihood Estimation (MLE)
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\{;‘-—{ Now we are in a position to introduce the concept of likelihood.
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SR ’.Jl-ff‘th_'é probability of an event X dependent on model parameters p iswritten
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g :x . then we would talk about the likelihood
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.'I—, < that is, the likelihood of the parameters given the data.

2= B { For most sensible models, we will find that certain data are more probable than other
data. The aim of maximum likelihood estimation is to find the parameter value(s) that

——«1 makesthe observed data most likely. Thisis because the likelihood of the parameters
given the data is defined to be equal to the probability of the data given the parameters

A

(nb. technically, they are proportional to each other, but this does not affect the principle).

j{lf wewere in the business of making predictions based on a set of solid assumptions,
> then We would be interested in probabilities - the probability of certain outcomes
occurrl ng or not occurring.

However, in the case of data analysis, we have aready observed all the data: once they
have been observed they are fixed, thereis no 'probabilistic' part to them anymore (the
! word data comes from the Latin word meaning 'given’). We are much more interested
: '—,\-/:— | in the likelihood of the model parameters that underly the fixed data.

_£ Pﬁobability
Knowi ng paraneters -> Prediction of outcone
! “"Likel i hood
b
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\
(bservation of data -> Estimation of paraneters

A simple example of MLE

—
{/ To re-iterate, the ssmple principle of maximum likelihood parameter estimation isthis:
W/fl nd the parameter values that make the observed data most likely. How would we go
] \ *about thisin asimple coin toss experiment? That is, rather than assumethat pisa
~~Certain value (0.5) we might wish to find the maximum likelihood estimate (MLE) of p,
given a specific dataset.

+
S/ Beyond parameter estimation, the likelihood framework allows us to make tests of
&t‘-‘ parameter values. For example, we might want to ask whether or not the estimated p
' differssignificantly from 0.5 or not. Thistest is essentially asking: is there evidence
<1 \that the coin is biased? We will see how such tests can be performed when we
introduce the concept of alikelihood ratio test below.

- | Say we toss acoin 100 times and observe 56 heads and 44 tails. Instead of assuming
“1 7 that pis0.5, we want to find the MLE for p. Then we want to ask whether or not this
~value differs significantly from 0.50.

How do we do this? We find the value for p that makes the observed data most likely.

As mentioned, the observed data are now fixed. They will be constants that are plugged
\{ » _ into our binomial probability model :-

.\:"( . N =100 (total number of tosses)
\_/ ¢ h=56 (total number of heads)

2 Sl
- o |

tmagine that p was 0.5. Plugging this value into our probability model asfollows :-

b 100! 36 g4
ﬁg L(p=10.5|dat a)—mo.s 0.5% =0.0389

— BUt what if p was 0.52 instead?

'.‘- = '
L{p=0.52| data) = ﬂﬂ.sfﬁﬂ.%‘” = 0.0581
561441

=
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({; So from this we can conclude that p is more likely to be 0.52 than 0.5. We can tabul ate

the likelihood for different parameter values to find the maximum likelihood estimate
e :(of p:
-
1 _III F

= - N P L
£ 0. 48 0. 0222
. 0. 50 0. 0389
A 0.52 0. 0581
ghia | 0. 54 0. 0739
_Eﬁgf—* 0.56 0. 0801
- 0.58 0. 0738
_4 I 0. 60 0. 0576
! 0.62 0. 0378

+ If we graph these data across the full range of possible valuesfor p we see the

- [following likelihood surface.
\
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A
\{" We see that the maximum likelihood estimate for p seemsto be around 0.56. In fact, it
$oy’
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Hs exactly 0.56, and it is easy to see why this makes sense in thistrivial example. The
> ba;t estimate for p from any one sampleis clearly going to be the proportion of heads
\observed in that sample. (In asimilar way, the best estimate for the popul ation mean
—& o+ will always be the sample mean.)

So why did we waste our time with the maximum likelihood method? In such asimple

. case asthis, nobody would use maximum likelihood estimation to evaluate p. But not

'\ all problems are this simple! Aswe shall see, the more complex the model and the
_greater the number of parameters, it often becomes very difficult to make even

< reasonable guesses at the MLEs. The likelihood framework conceptually takes all of

- thisiinits stride, however, and thisis what makes it the work-horse of many modern

-~ statistical methods.
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