How to Read the Output From Simple Linear Regression Analyses

This is the typical output produced from a simple linear regression of muscle strength (STRENGTH) on
lean body mass (LBM). That is, lean body mass is being used to predict muscle strength.

Model Summary(b)

R |R Square|Adjusted R Square|Std. Error of the Estimate
.872(a) .760 .756 19.0481
a Predictors: (Constant), LBM
b Dependent Variable: STRENGTH

ANOVA
Source |Sum of Squares|df|Mean Square F Sig.
Regression 68788.829| 1 68788.829(189.590(.000
Residual 21769.768|60 362.829
Total 90558.597(61

Coefficients

Unstandardized Standardized 95% Confidence
. Coefficients Coefficients . Interval for B
Variable t |[Sig. T 0
ower pper
B Std. Error Beta Bound Bound
(Constant) -13.971 10.314 -1.355].181 -34.602 6.660
LBM 3.016 219 .872113.769(.000 2.577 3.454

Table of Coefficients

The column labeled Variable should be self-explanatory. It contains the names of the items in the
equation and labels each row of output.

The Unstandardized coefficients (B) are the regression coefficients. The regression equation is
STRENGTH = -13.971 + 3.016 LBM
The predicted muscle strength of someone with 40 kg of lean body mass is
-13.971 + 3.016 (40) = 106.669

For cross-sectional data like these, the regression coefficient for the predictor is the difference in response
per unit difference in the predictor. For longitudinal data, the regression coefficient is the change in
response per unit change in the predictor. Here, strength differs 3.016 units for every unit difference in
lean body mass. The distinction between cross-sectional and longitudinal data is still important. These
strength data are cross-sectional so differences in LBM and strength refer to differences between people.
If we wanted to describe how an individual's muscle strength changes with lean body mass, we would
have to measure strength and lean body mass as they change within people.

The Standard Errors are the standard errors of the regression coefficients. They can be used for
hypothesis testing and constructing confidence intervals. For example, the standard error of the
STRENGTH coefficient is 0.219. A 95% confidence interval for the regression coefficient for STRENGTH is
constructed as (3.016 £ £0.219), where kis the appropriate percentile of the t distribution with degrees
of freedom equal to the Error DF from the ANOVA table. Here, the degrees of freedom is 60 and the
multiplier is 2.00. Thus, the confidence interval is given by (3.016 £ 2.00 (0.219)). If the sample size were



huge, the error degress of freedom would be larger and the multiplier would become the familiar 1.96.

The Standardized coefficients (Beta) are what the regression coefficients would be if the model were
fitted to standardized data, that is, if from each observation we subtracted the sample mean and then
divided by the sample SD. People once thought this to be a good idea. It isn't, yet some packages
continue to report them. Other packages like SAS do not. We will discuss them later when we discuss
multiple regression.

The t statistic tests the hypothesis that a population regression coefficient p is 0, that is, Hy: g = 0. Itis

the ratio of the sample regression coefficient B to its standard error. The statistic has the form (estimate -
hypothesized value) / SE. Since the hypothesized value is 0, the statistic reduces to Estimate/SE. If, for
some reason, we wished to test the hypothesis that the coefficient for STRENGTH was 1.7, we could
calculate the statistic (3.016-1.700)/0.219.

Sig. labels the two-sided P values or observed significance levels for the t statistics. The degrees of
freedom used to calculate the P values is given by the Error DF from the ANOVA table. The P value for the
independent variable tells us whether the independent variable has statistically signifiant predictive
capability.

In theory, the P value for the constant could be used to determine whether the constant could be removed
from the model. In practice, we do not usually do that. There are two reasons for this.

1. When there is no constant, the model is
Y=b X,

which forces Y to be 0 when X is 0. Even this is condition is appropriate (for example, no lean body
mass means no strength), it is often wrong to place this constraint on the regression line. Most
studies are performed with the independent variable far removed from 0. While a straight line may
be appropriate for the range of data values studied, the relationship may not be a straight line all the
way down to values of 0 for the predictor.

2. Standard practice (hierarchical modeling) is to include all simpler terms when a more complicated
term is added to a model. Nothing is simpler than a constant. So if a change of Y with X is to be
place in a model, the constant should be included, too. It could be argued this is a variant of (1).

The Analysis of Variance Table

The Analysis of Variance table is also known as the ANOVA table (for ANalysis Of VAriance). It tells
the story of how the regression equation accounts for variablity in the response variable.

The column labeled Source has three rows: Regression, Residual, and Total. The column labeled Sum of
Squares describes the variability in the response variable, Y.

The total amount of variability in the response is the Total Sum of Squares, 2 (; -¥7. (The row

labeled Total is sometimes labeled Corrected Total, where corrected refers to subtracting the sample
mean before squaring and summing.) If a prediction had to be made without any other information, the
best that could be done, in a certain sense, is to predict every value to be equal to the sample mean. The
error--that is, the amount of variation in the data that can't be accounted for by this simple method--is
given by the Total Sum of Squares.

When the regression model is used for prediction, the error (the amount of uncertainty that remains) is
the variability about the regression line, 2. (-3 . This is the Residual Sum of Squares (residual for

left over). 1t is sometimes called the Error Sum of Squares. The Regression Sum of Squares is the
difference between the Total Sum of Squares and the Residual Sum of Squares. Since the total sum of
squares is the total amount of variablity in the response and the residual sum of squares that still
cannot be accounted for after the regression model is fitted, the regression sum of squares is the
amount of variablity in the response that is accouned for by the regression model.



Each sum of squares has a corresponding degrees of freedom (DF) associated with it. Total df is n7-1, one
less than the number of observations. The Regression df is the number of independent variables in the
model. For simple linear regression, the Regression df is 1. The Error df is the difference between the
Total df and the Regression df. For simple linear regression, the residual df is n-2.

The Mean Squares are the Sums of Squares divided by the corresponding degrees of freedom.

The F statistic, also known as the F ratio, will be described in detail during the discussion of multiple
regression. When there is only one predictor, the F statistic will be the square of the predictor variable's t
statistic.

R2 is the squared multiple correlation coefficient. It is also called the Coefficient of Determination. R2
is the Regression sum of squares divided by the Total sum of squares, RegSS/TotSS. It is the fraction of
the variability in the response that is fitted by the model. Since the Total SS is the sum of the Regression
and Residual Sums of squares, R2 can be rewritten as (TotSS-ResSS)/TotSS = 1- ResSS/TotSS. Some call
R2 the proportion of the variance explained by the model. 1 don't like the use of the word explained
because it implies causality. However, the phrase is firmly entrenched in the literature. Even Fisher used it.
If a model has perfect predictability, the Residual Sum of Squares will be 0 and R2=1. If a model has no
predictive capability, R2=0. In practice, R2 is never observed to be exactly 0 the same way the difference
between the means of two samples drawn from the same population is never exaxctly 0 or a sample
correlation coefficient is never exactly 0.

R, the multiple correlation coefficient and square root of R2, is the correlation between the predicted and
observed values. In simple linear regression, R will be equal to the magnitude correlation coefficient
between X and Y. This is because the predicted values are b,+b,X. Neither multiplying by b, or adding b,

affects the magnitude of the correlation coefficient. Therefore, the correlation between X and Y will be
equal to the correlation between by+b,X and Y, except for their sign if b, is negative.

Adjusted-R2 will be described during the discussion of multiple regression.

The Standard Error of the Estimate (also known as the Root Mean Square Error) is the square root
of the Residual Mean Square. It is the standard deviation of the data about the regression line, rather than
about the sample mean. That is, it is
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