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811xl + al2x2 + “135 + . . . . . . + alnxn  = dl


a215 + ‘.‘2~~2  + ar3x3  +  .-....  +  a2nxn= d2


(2.1) a31x1 + a32x2 + a33x3
+ .*... + a3nxn  = d3


.*......*....*.....,....,...........*.*....


an,x,  + an2x2  + an3x3  + . . . ...+  amen  = dn
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all a12 “13 \
=I1 al2 a13
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=21 "22 az3


i


; A= =21 a22 =23


“ 3 1 a32  $3 a3l a32 a33
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u- u,,u2,u
I 3 ,...,  I). 111


#ll7unYl~;‘: Vector ut!hi  row vector ua=i  dimension


element  ViUWn 62
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v3
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2 35 li 1 2+
4 3 4


1 1[ 2+1 3+2=
4+3 5*4


a11


a21


a31


a12+ %2


a22+ b22 '


a32+  b32


pij]  + rbij]  = [‘ij] IntJ4  ‘ij  = aij + bij


.
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[aij] - [bij] = [‘ij  ] lnfJil ‘ij = aij  - biJ


hkd  2


‘12


a22  -


"32 I


2.3 m~wrif$
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bll b12[ 1b2l b22


kB I kbll kb12[ 1kb21 kb22
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A P
II all ?2* B3 = bll


1
b12 b13


i


AB=C  =
p11  ?2 531


,
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= allbll + a12b21


@&jfys
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mtzb%  cl3 = a,,b13'+  a,2b23
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qptailu  fiuamnmm ( Commutative Law of Addition )d


ile a+b = b + a


ng"vd~dfi~o3n~~~ai  ( Comdative Law of Multiplication 1


ila ab = ba


npnqrf'iiqBgnqr)J?n  ( Associative Law of Addition )


19 (a+b)+c  = a+(b+c)


ngn~~$iJ&ll!fHn~~p  ( Associative Law of Multiplication >


ila Cab)  c = a ( bc >


n$Vltn~ZVWl  ( Distributive Law) "nB


a(b+c)  = ab+ac


‘fW&  A + B =B+A  =


Associative  Law I ( A + B ) + C = A + ( B + C )
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Associative Law : (AB) c = A (BC)


A =


2
= all  ‘I + a22  4


Uar  ( X:A  ) x =
1:all  x1 a22 “2


xl


II 1


2
= all  II


2


x2
+ F22  “2
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c2E2P  0 0 '1 .I
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( Idiosyncraciee of Matrix Algebra )
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(3) (AB)' =
,


3
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1
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6
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(Bh)A-’ = I A - ’


B(AA-') = IA-'


BI = IA-'


1 nrzm& B = A-’


&I A-‘h = I


(associative law)
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rwrr%&  c
-1


t $A


Inverse of AB % Be'A-'


&I w3r1 = *-I*-'
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a-~lr7aJ  raw  DA%M#;lk
DA' = I = (AA-')' = (?)'A'


ua:i dfl post-mnlitiply~~4dP~~~~~  (A')-4z1&


DA' (A')-' = (A-')'A' (A')"


&I 1 X = A-Id


x = A-Id
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.


all a12
A 9 [ 1a2l a22


lYWzl& Determinant of A &J


all a12


a21


= a,,a22 - a2,a12  = Scalar


a22


(Al = ; ; = (J)(9)-(7) (5) = -8
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/B/z 4 3I =  (4)C4)- (2)X3)  =  10
12  4


a&l Order of Determinant A = 2
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I”1  =


41







[At = 91 '?22 a33 + al2 a23 91 + al3 a32 a21


I (4)(7)(-2)  (2)(O)(3) (3)(5)(-l)


-(3)(7)(3) - (5)(O)(4)  -t-2)(2)(-15\


I -56 O-15 - 6 3 - O - 4


= - 1%
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Laplace  Expansion Method


I 1C
id = ‘(-IF Hij


I 1
JUJ+&J  Cofactor pm element aij


I'ijl ~$4  Minor m element aij


i Hu7U404  row U-l&JI i , ( 'id ,2,3,.  .'.)


j tlWlU34  Column  ti+iiJ~  j (jz 1, 2,3,...)


ti7~&~vhpmUL~~l~~llJ&  K&l "Minor"
"


~tWl7~klhW  Minor" 1;


;? Minor if0 i'nrnofilu~~?w;w(Sub-Determinant  ) ~~"n~I't&l~IlU ;;jmsimllnl;&on
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fl&;aJt%.4%  element of matrix 4L*Ghcn"nJ


u7*~;;73nru~97nh&4~ld


K&d 1 (mtU7ninor  1


th&&‘lit,i~Mf’st~;  A ii fht&i$a


*II *I2 "13


I I
A = a21 “22 a23


a3l a32 a33


LYi%~&'l MinorPQJ alI %I M,, -=
I I


“22 a23 = “22 a33 a32 *23


a32 "33


Minor WJ a21 %I M2, =


' ' I


a12 "13 = a12a33-  aj2a12


la
I 32 a3S


Minor EN a3l flM3,1 = ia,*  al3 = a,2a23-a22a,3


I
a-,Ld a23 I


Minor w.14 aI2 %I \M,21  = a2l a23 =a21a53-a31a23


'32 axi. I


Minor w: a,3itQjr-131 = 57 “22 = a21a32-a31a22


a3? 52


Minor BQ4 a
33


#QM
I I33' ='all 32  = alla22-a21a12


a21 a22
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Cofactor ggg element PPJ element


= (+I a22 a23 '


$2 “33 I
=


a22  a33 - a32  a23
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Cafactor  WJ a27 %I C2, = (-1)
I I


2+1


I I
Mu, = (.,I)~


I IM21 ,


I
92 a’3= l-1
a32 "33=-


(a12a33  - a3<?813


Cofactor WN a3, Im p3,1  = Gl~3+1/q,/=  :-1)4/M3,1


a12 a13
= (+I


a22 a23


= a12a23 - a22 "13


%lvhuMt4WGl  Lt7ftd7Ln?RH7  CofactorXN  element #&I  7 In'


h&d  3 (VW&Moj  Determinant)


&l&l  Determinant A !lfhldl;  ilfl


I
all a12 a?3


a21 a22 E23


a31 a32 a33


Lt?&% Laplace  ExpaneionhJhLM  row dr lib


PI F “11(%l * a12p121 + a13JC131


= a,, (-l~‘+‘/M,,l+  a12(-1)1+2~M,2~+a13~-l)1~3/H,3/
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&22 a23 a21 a23 a21 a22 1
= a11 -a12


I


I I


a32 a33 a3l a33 I


-93
a31 a32 I


= "11 _tag2  a33 - a32  a23' - al2 ( a21 a33 - a3, a23) + a13(a21a32-a31a22


= a~q a~2 a33 - a~~  afz  a23  - a12 '21 a33 + a12 "31 a23


-’  a13 -%I a32 - 93 a31 a22


I IA = a21 )'211 + "22 1'221 + a23 I”231


= s21(-i)2+1 1 M21  1 + a,,(-I)‘+”  /Ma/+ a23(-1)2+3)M231


= -a21 p4211 + a22 /'22)-  a23 l"231


= -a21(a12a33 - a32a13)+ a22(al,a33 - a3,a13)  - a23(alla32-a31a12)


= -a2lal2a3~+a~2al~a2l+a22a11a~~-a~a3lal~-al~a~la~2+a23a3~al2
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= -(-lo-a)*  3(-8-4)+ (4- 10)


= 12-3666  = -30
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=


jb d/=


2 3


I
I 2 - 12 = - 10


41


a b
= ad - bc


C d


I C


a
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d


I


= cb - ad = - (ad-bc)
b
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all a12
IAt = = aqqa22  - “211~12


a21 a22*L38pwu Scalar k %rn


91 %2


&/A( =
a21 a22 I


= k%la22 - a21a12)
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kal 1 ka12


=:
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IAl = 1 a ’ 1 = ad - bc


I c d I


IAl=  a+kc  b+kdI
1 c d 1


= ad + p,ca  - bc - kcd


z a d - bc


= 2ab - 2eb = 0


2a a


I


= 2ab - 2ab = 0


2b b


a b


I I
= ab - ab = 0


a b
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L


-lfltld ll?u i =
1 c I


1, 2, 7c


ofactor  WI4
Cj "ij ( j = 1, 2, 3 1
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Qdl 1ifa lYVlY7ush Cofactor Matrix Aor’lk  Adjoint  A fid


llaii  rtw:Gl Inveree  of Matrix &


-1A


ll~:l&!  Inverse
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c =


1 I ri =p21  I C22


1&I lf'l Transpose C%ln'  Adj:A %I


Adj.AtC'  =


1 0L I-8 3


14


I I
'0 3


A-l = Adj.A


I"/


rA-‘= + ‘*
1 30 3
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l/S -613
-' i 10 1


B =


4


jBj= 0-l;. -g-6-84=-99990


3 7 0


Matrix B t& Non-Singular Matrix tlti=a,u7t~7"rm,?o;~


56







-21 9 -4


= i 7 -3 -313 -12 8 1
E


J


i -21 d 9 -31 -3 7 -3 -12 8 I
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A =
7nr


tT’  ,,,


91 a12  l ** aln


a2l  a22 . . . a2n


. . . . . . . . . . . . . . . . .


anl azl2  l -* ann


-


WWlWltm  Cofactor Matrix *G&l
I-


Ita:1 dfl tianepose din’  Wi A d!
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2Zt3nj  jcljI iianj Ic2jl**’ $ianj


1
I %I
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AC' = IA/I  = I


T7il -iT-


AC' =I
jT


L da Lt7  pre-multiply ihtQ&&U  A-' I:6


A-IA  C' .= A - ’  I


(Al
I c' = A-' I


iv
,


z A-'
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A-' = 6 = Adj.,A
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(hlMRow d 3 wz  column d 3 m&J)
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.
xeA-'d  =


-$j- ( Adj A) d


!


=14...
X


II


=*


r
dl  hil + d2 I C21


=


-i%-


dl p121 + d2 I c22


. . . . . . . . . . . . . . . . . . .


c


+ . . .
+  dn Pnll


+ . . .
+  d+l21


. . . . ..*..........


+ . . .
+  4(%n\


M
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x, s 1 z di 1 'iI/IAl  i=l T
t&i,


IAl is? I Ici2
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=j
E


all


7+ 3'
.
.


aYll


a,2  . . .


a22  . . .
.
..
an2
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x, = tq
x-


=


I


2 1


3 -e


*-a=-
-4-3


- 56 = 83:-


-7


= 16 - 72 -56= = 0
- 4 - 3 -7


&I Xl = 8 WX, =8


#+f&A 2 WI; Cr-r’e  me  u&wn~;rOld
2x, - x2 = 2


3x2+ 2x 3 = 16


5x, + 3x3 = 21


66
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=q = IAll
m


*2 = lb;?)
1x7


x3=&


IAl


lb  x,=  3


=


I 21 16 3  0 2  3
I


24
=- 3


12 -1. 01
0 3 2


5 03 I


I Q1  5 21 16 2 3 I 32
=- s 4
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2 -1 2


o 3 16


5 0 21


8


X=z4 5”  2


16
-=-= 2


8
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*= oM?fi dk = 0
dX z


&I f'(x) = 0


1.2 Power-function Rule


Derivative W4 power function y = f(x) = xn ilo nx'l'l


real number)


I!% f'(x) = nxn-'
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aiak lperivative WJ y z # b d2 = g = 3x2


2) Derivative 8fN y = x9 &l d.& = gg = 9x8


3) Derivative flDJ y = x-s dx-9sz  z = -gf'O


4) Derivative m y = x0 #a & dx"dx = ;i; = (O)(x) -' no


$8 & dldx = z = 0 ( ar"=1r8m )


5) Derivative rnJy=xxo&  d . 2
dx = z = $4x-s  (P


1.3 Power-func.ttFon  mle generalized


)r
Ldfl Power fhnction  il constant(c)  $iB&&  f(⌧) l= Cf


Derivative JUn$&


A. cxn t cd-’ Ida f'(r) = cnx'l-'
d.x


*Lf@Gl  lWJ?t  differentiate c$L  Lt9&lJlSfA  (c) f&4  7 ELlkltl


differentiate L&IQ xn Lk&


2 fmmGswd&hd~&,~~&~


(Rules of Differentiatioh  Involving Two or More Functiona  of the


Same Variable)
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& [f(x) +, g(d) = $ f(r)r$  e(x) = f*(xi  ,+ g’(X>


(a? + bf + cx + d) I 3ax2+2bx+o


2) $ (7x4+42-2x2+5~-27) = 282+12x2-4x+5-0


9 282+12x2-4x+5


P.
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6&w = (2x+3)(8x)  + (4x2)(2)


t 24x2  + 24x


g(x) f'(x)  - f(x) P'(X)


s2w


I.1 d (2x- )z +- = (x+1)(2)  - (2x-3)(?)  I 5 2
(x+1 I2 (x+1)


2) d (5x)=
ax x2+1


(x2+1)(5)  - (5x)(2x)
<?+I  1 2


3) A (ax2+b) = (cx)(2ax)  - (ax2+b>(c)  = c(ax2-b~  d-b
dx cx (Cd2 (cxc) 2 -7


(F&lee  of Differentiation Involving Functions  of Different Variablom)
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= 2x+5


g= $f $ = 6y(2)  = 12y = 12(2x+5)


*I;;1 t = y-guaz  ,’ 2


g = (1)(3x2)  = 3x2


3G t = f(y), y = g(x) UB:: x = h(r)


g= !pg!g  = f'(y)  g'(x)  h'(w)


4); 1.= (x2+ 3x - 2P7


17(?+3~-2)'~ (2x+3)


3~2pver88- function Ruls&un =f(x)Lh  Monotonic Function6


(%‘SrJIJ&i,ijncintun  xd&v~rn' ' '
*:.3 Ghihmtam) iTWBl.4  f iii& inverse


fnnctionjjlfl  x = f-'(r) 1mA ia Lf?R,&  y ,,7rtflw.rlfll#7P;7  *Gun


(mnfltolq  :i-' iTlkUJW%  $ ll~*UM&x  Lihlinverse function 2QJy  1


;;7timp;L;;  y = f(x) LihlM0n0t0niO  Function ua=;;7  f(x) 1


r;anAl&  t ilp;wlnh lr?~lfln  monotonic function6J;Qlh  Noaotonicall~


Increasinn  Fuaotion  l&T; f(x) &*a4iL x “mtnn’ z Lf%i~~monotonic


function #U&L&l  Honotonically  De&easing F'unction.


rql'lu~~~%@&Ki4  Inveree  Function%
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J = f(r,,4)  = 3~: + 5% + 44 mmP=tial


i2 = 8x2+ x.,
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2 )  lflmiii  y I f(U,V)  = (la+4)  (3u+2r) L??dcUn?P#l  Partial


Derivative t;;lf!& Product Rule %


fa = (d+)(3)  + (I)(~u+~Y)  = 2(3~+~+6) (holding v coastant)


iv = (0+4)(2) + O(3u+2r)  = 2(u+4) (holding  u aonstmt  )


Derfratire


-2(u2+3r) - 3(3u-2vl
(u2+3v)


2
= -d2u+9)


h2i3y12


(Rules of Differential)
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dhw)  = vdu + udv


u
dF t $vdu - udv)


lnnn&lwk& ,t’ldm~nl~~wfn?nl


differential 6(h17fif& 4 &?&&QlJu& tid


afIb d(u+v+v) v du+dv+dv


d(uw)  e vwdu  + awdv  + uvdw
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= 4x,dx, + “,x2dr2  + +x, clsqjl 1)


P ‘44 + +c, + 2x,x.&


3) HWllMal  Differential YlfN  y t 3x, + x2


h&Partial Derivative rt7rh'l;;hjll


2x;


il = (2x;)(3) - (3x,+x.9(4x,) = 6’: - 12x; - 4x,x2
4=l  4 4x,  4


I - (3x, + 2x2)


at


0
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dy =
(2+d (3x,+ x2' - (37 + x2jd(2x:) &,,,&,  4l


4xl 4


(2x:)(Jdx,+dx2) - (3x,+x2)(4x,dx,j (IrmQii 2 ua= 1)
=


4x;


6x;dx,+2xTdx2  - 12xqdx, - 4x,x2dxi


= 4
4x1


-(6< + 4x,x2jdx, 2x;dx2
=


4x 41 +-k 4x1


-2x,(3x,+2x2) 1
= 4


4x1
9 + -dx22x:


-(3x,+2x2) 1
=


24
% + -dx22x;


6 n?*~fi;~wma4~&*~n~lJ
(Total Derivative of Composite Functions)
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Differential h dy = f,dx, + fzdx2


*
Ulffiildflk"  Differential dx, lf79:~fl Total Derivative 88


dy = f, + f2 dxz


=l dX1


W11'l Total Derivative c&


dX1
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l"tJ%*,ru*lX~~


&
dxl


= &L-x: + 3x, -9)


= - 2x,  + 3


dud&i!  Composite Function#fl


Y = f(x,,x2)
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Q = Q (K,L) = 2oKL- I+ : 2 L2


h K r g(t) = o.3t  u% L = h(t) = 0.2t


4.3 K #a '1~ (Capital) L&I U~WI~.~ (Labor) t %I L'Xi'I(time)lW  Q %I


oau3n(mtp~t) ww&mmttti  uuiula4muarAplr *vmfm~&4UmN~~~d d


'97n Q = Q (K,L)


= (2OL - 2Kjc0.3)  + (20K - '+L)(O.2)


= 6~- 0.6~ + 4K - 0.8~


= 3.4K + 5.2L


= 2.06 t


lt4 Composite Function%


Y = f (x, , x2) 44 7 = g(u,v)


x2
= h(n,r)
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tnmn& a p ar  a9 ar  afr
aci = ax, jr + 3-5  yjii


. . . . . . . . . . (1)


w ar ar ay ar ax,
-i - -+- -


av -0,, av ax, av
. . . . . . . ...(2)
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YlA&4li~fii~  LYlWParti&l Derivative Ikid


WTllbGl  Partial Derivative L&l&I
.


4 u (1) U% (2) tf=lnPaAial  Total Derivative


Ed


$$= (6x,X1)  + (2)(1ou)
= 6(~+2$)  + 2011 = 6u + 12~~ + 20x1


= 26a+ 12v2


fi=
4-J


(6x,X4v) + (2)(1)


;L 6(u + 2v2) 4v + 2


= 241~  + 482 + 2
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m~~%$G(Derivative)~Jimplicit  function LtVf~I?i$
I


Taking the differential &itsd~~m?~n~~  F (qy) = 0 li~%~tnemn;;?u


differential dx'if-t&.l~~~ '#id


f&19$& Derivative(*) IEN Implicit Function y = f(x) dii~~~~~~u~~
dx


F(x,y) = 2Y + %y  - 5x


L?lt?:%z&Partial  Derivative Fx&Wz  5 &


F x  = y-5 Fy= x + 2


LWfW&Derivative  d& $B
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Fx = 6x2- y2 UR:: Fy= -2xY  + 3r2


LYlf'Ktl=& Derivative 4"m\lmtl%


$= - ( 6x2-y2) = g2-  6x2


-2xy + 372 3Y2-  2xy


*
&t&I  Partial derivative


8 MfM%lWU¶~J monential M: Logarithmic  Functions


l4&"~&f'l~fin'lWl  Derivative WI9 Exponential Function i%


d
TEb


f(ti = ,'(t) bf(t) lnb
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k e
f(t) = ,'W efw 1lZe


Fs ,'&I *f(t) ( ','lne=l)


&logbf(t)  = s& * A-lnb


%lld  b = e %I log j?u e Derivative %rjuiij#


h&4 1) WWI Derivative llW p = et


= et ( ",' dt
iK = I' tty: In e = 1 1


2) WInDerivative  WN y = ert


$$ 3 g CfP) lne


= rert


3) NH7 Derivative 5EN y = eet


g t !p). 2lne


- tC -8
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4) OJMI derivative  %fN  y = bt


iIt= %b%lnb)d t


I btlnb


6) Wwl  derivative WN y = In at


7) Wmderivative  m p = klnt


iz
d t = k=d 1nt = $


8) NWl  derivative 304  g = lnt'


i!z c tc-l
dt=T  =


c
t


9) WPL? derivative %%I  y = t41nt5


g = t4 + l& + id& t4


=
+ lDt5(4t3)
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= 5t3+ 4t%5  LDt.l


I 5t3(l+  4 lnt)


10) 9JM'Iderivative  %I9 y = logb t


L!z
dt =


!zp*r;'ra


= 1
tlab


g lYltmflu~;a?titaaw.mAN


(Second and Higher  Derivative)


Second Order Derivative &Derivative qNFirst  Order Derivative


&LOj  &L&k&y = f(~LT~~&$&ll?lU First Order Derivative, Seconq


Order Derivative, Third Order Derivative,  Fourth Order Derivative... KliT


First Order Derivative : do 3 f,cx)
dx


Second Order Derivative :


Third  Order Derivative : &
dx?


Fourth Order Derivative : .:A(&)
d3 dz?


1 f4(x)


1) WM'I Second Order Derivative WI4 J -- lax2 +bx+c


&i=
dx


tax + b


d2
2~ 2a
dz
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2) WM'I  Second Order DerivativeBN  y = 1 + x
1- x


2x  = (1-x) - (1+x)(-1)


d x (l-xl2


= 2


X%+X2


& = (1+2x+x2)(~)_-(2)(-2+2x)
d? (1-2x+x 2 1 2-


= 4(1-x1


,-4x+6x2-4x3+x4


3) ?WlThird  Order Derivative %IQ y = 4x4-3x+23


!3Y
dx = 16x3- 3


!A
dx2


= 48x2


!2Y
d$ =


96x


jOSecond-order  Partial Derivatives and Total Differentials


3.lo.f  Second-order Partial Derivatives &i'Il~fii~ 2 = f(x,y)


wwwJ;1  2 Lhfi;~3ti&ruJo  2 fi? i% x uaz y Lywjmyn117  First Partial


Derivative $& d


Order Partial Derivative  1%
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m: fyx &J Continuous Function fxyW fyx w&i&%


&lkN 1) WWI Second-order Partial Derivative =J z = x3+ 5xy - y2


5
= as


ar


=  3x2  +  5s


I
J


=$f- =5x-2y


2


fr$
+&- =5


r
YX


A&- =5


2) NM'I Second-order Partial Derivativ&ad  z = se-9
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.
= 2xe'y


f az
Y'PJ' (x2, d c-y) e-y


dz


f
9= 3=a ($1 = -2x*-y


frx = g Cf,)  = -2xe'y


10.2 Second-order !Potal Differentialhmn  z = f (x,y>j;  Lt'l


d'W?fWl First-order Total Differential~~~


dz @!a df ) = fxdx + fpdJ


bIl?'KQ&  Second-order Total Derivative %I


6’s = d(de) = acddx+ aady
ax BY


=
3$- (fxdx+fydy)dx  + &fxdx+fydy)dy


= (fxxdx+fxydy)  dx + (fyxdx+fyydy)dy


= fndx2+  fxydydx  + fyxdxdy  + fyydy2


dx2 5 (dx)2 UI: dy2  s (dy12j


= fndx2+ 2fqdxdy  + fyydy2
C
f
v
=I


YX3
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dz  - d(s) + d(54)  - d(Y2)


= 5x2dx  + 5xdy  + 5ydx - 2YdY


d2c I d(3x2>dx +  d(5x)dJ  +  d(5rk  - d(;b)@y


= (6xdx)dx  + (5dx)dy  + (5d~J)dx  - (2drht~


e 6xd? + 5dxdy  + Wdx - 2dy2


= 6xdx2  + 1OdxdY - 2dy2
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a 1. I&M relative 8axiwa &I relative ninllmm  h f’(x) 1


N#tlmn&~teJ x0 LM ill pd 4.4


lun&im(d  lkLt%hi*~  infleotion point @iam inflection


point &I derivative function (fb)&!fkjJ#%& (Extreme Value) ii


qfnk  nnpl 4.4 ~&il& extreme value mJ f'(x) %~&&l x = xj WJW


nQw$lf'(X>  jltka4,~fl" 7 &a ?Il+lluar  f'(x) tlnaJmIIJO~f'(x)  = 0


% A W%Qn A' uardfl  * ih;tL~l~fl  iifllnnn4 Xj f' (~+3AttiUr,r&


f(x,)& A klhinflection point
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Gidilll  4Ltfll~  9UifJ  extremum value x = xh1


k%'l8MN tllf'K&  f(\)& B 9=& inflection point dilf'(x)  pp


32mtm  relative naxinru  u?a  minimum & rjfzmtufntfqm  first


derivativem  function h-i Pa'BWIZJI Blllll &ill~&&set  1; first derivative
. ,


lkLB+iil~U(mero)  Ilk solve ~,~;?8PJK,LUl,~f:~*Jfunction  I& kSiPW&l


critical number ( dfnl, critical numbem BUooluj?U  function7 dnimun2  ;;p;I


ti n'ti(Ul& critical value of the function) &U?neighborhood  W1


critical number ~tiuVlha& derivative function ikrn mi9iGmnln;n


f&pu~  (f'~x$>  0) b&ilhlfi;,p;(f'(~  ( 0) It& rr?h,unm;7


critical valueB8OJ  function &llfu maximum $8 minimum &LiIhinflection


point Inu~a~~inmr~IRf7=~a,b,c t;Jfl;~~~J;;I1


WWI -relative extrema 4185 function ?ki?BlJ~l~


9 = f(x) = x3- 12x2+ 36x + 8


dy:mYurn  ~f&80jB?  derivative functionl&lfkU  $kl


f'(x) = 3x2- 24x + 36


IltrmG4altlo~  if? set 1; f'(x) = 0 1&IM'l  critical numbers &i


3x2- 24x + 36 = 0


~tq~~idh~tufh&~  &,.2 uarG2=6 &du critical numbers tt


&04mt(ua:dwudn  Z, uar 3 a&if(x)  Lf7%‘2if(2)=  40 ua: f(6).8


40 U8::  8 LfU&lcritical value )


~~~nnaall;? f(2) = 40th maximum value B&lLihl minimum value


mu5$htumt~mdnm  neighborhood  BM x Umaj'ZlflUderivative function Lf7
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1% f(2) = 40 & relative maximum value of the functiofl~~fl~&&


ii& f(x)!llGqqnrilo xG&ll% 2


‘Lurnm&~ f(6)  =  8  tifumaximum value &l&l minimum value


r,~l~tiQ4r~~~im,Pwlwnfi dua; ml;;;7  f'(x>C 0 1dQ x(6 llaz  f’(x)>0


LifB x > 6 ,nt,~ar&,r~aflil; critical value f(6)=8  L&J minimum


v a l u e  &~y~l;;iff&~Aa’Wl f(x) 9&Gl~fl (relative minimum) &JX=6


3.2 Second Derivative Test for Relative Extremum


t own f'(xo) = 0it ‘Inr~~sJ~ro~~~~~w,,awn,Ill~udr$~??f(.D,


&extreme value L& ~Yt9Z3lfl&  extreme value 9184 f(x) l%lh maximum


value $0 minimum valus ~&Nl~~~n~~~~fI'l~U~~  neighborhood wl3 x
0


a4ldh f'(X) ~~;?JjLRf,~~~,~~~~~,L~~?n~~~LjllaY  44 %ilm+mnwaawnf 14


1 oJ~n~f~~~~~~~;;?~d Second derivative(ftr(x)) aunrnuoGfir7mr  L&JIKN


slope pDJ function f(x)‘\; &.A ;c7 ftt(x)>  0 ll@MGl  f(x) curve t=Llb-


Shaped curve u(;;;7  fw(x) 4 0 I&l%& f(x) curve 9:LihI inverse-U-shaped


curv


‘b


C


‘e


1 i
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9x@  4.6 qfrpr f(x) rurve9til f:(x)>  0 TB 441 f'(x) = 0 m:f"(.)>  0


9dqfl minimum ¶%3 f(x: curve r;nilu@ 4.7 lb w g(x) curve 914


g"(X) < 0 FE 444 g'(x)=0  lu=Gg"(X)  < 0 k dqn maximum DflJ


g(x) curve Lflf%%&lsecond  derivative condition 73th sufficient


condition lun?riin&q extreme value Ii@! function9LL ihl maximum


value 3% minimum value I;?ULA$LOQ  If,iJd,~tnn;77L~~n~M1~~~~~~  &


first derivative %N function f 1$nx=


function $fnk f(xo) %Lih


x0 h f'(:o) = 0 fkl~


maximum &I minimum &q$iiGnn7rhtc


viii!


1) 9LLlh relative maximum ;;? ft'(xo)<O


2) Wlih relative minimum 0; f'(x,)>O


b&4 1) 9JYn relative extremum 3103 function dtimnlu*  i%


= f(x) = 4x2- x


wn function Lfw?IMfnM7  first derivativeUfl=second  derivative


Ikif


f’(x) = 8x - 1 LLEI: f"(X) = 8


set 11; f'(x) = 0 1BM'l critical number i%


8x-l = 0


.'.critical number = 1
8


t
uMuR'I  x = 1 NIU fhnction  %iiWiI~~*W~I~ critical value Xl4 function


B
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= g(x) = x3- 3x2 + 2


VW function f~mUfi#'  tf7dWlt~Wl  first derivativeutXdeY second derivative


1% g’(x)  = 3x2-  6 x : g”(X)  = 6x - 6


aet 7; g’(x) ro ii critical number.9 *Ro


3*2 - 6x = 0


Solve quadratic equation d,t,,:'Zk  x 2 k-l  %l


% = 0 &g 'jir=  2


&r&$9  criti ca numbersU  lhi&7aJ1lJ1 yz function &i%IWl~~i~?%'l~  critical


value 2 A7 Sfl


g (0)  = 2 &rdu maximum value LIPfl:Gl  g"(0) = -6 to


g (21 = -2 &LifU  minimum value LWYI:;? g1)(2)  = 6>0


3.3  I3 derivative Test for Relative Extremz
4
OUlLtm~3LRI7:&  maximum dfl minimum value flQJ function d


"I .
fi7MU~~MfWsecond  derivative t'Ull%  first derivative %xWlm*;7*t1;


mr~&&aa~  first  derivative &J&J AJQ uGti~7in’n*Rp  lun & f"(X) 00


~f~&~wafi~&j  Critical value &L&J  maximum &I minimum value Mi2;


n7*3LRt,=P;P18~Lt,~;PJ;$111;1013  (test fails) ,rtr,:a~,r,,=~;fiJ~~ln~~ao~
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first derivative k~%Jdflh~  ~h'dd~%~~~&%&  #fffG  derivative &


P+ second derivative L%U fu'(x), f4(x) . . . ..frYx)


?'llXl'I?%WI~  W%Maclaurin Seriesi4 , Taylor Sesiea  lW Jwmxw


form at the Remainder tr,~,mr"rrs?a~"n,TjLRf?:~ extreme valze 991'lb


maximum & minimum 1$&;2d:


h first derivative WNfunction  f(x) ?! x = x0
4' "M *
lPrwnPU~JU


(f'(xo) = 0 ) &I4 function %&maximum &I minimum
I 'v
tnqmims


SIR,%;  derivative &$&Id (higher order derivative) $t%VlJ&%Ufb3


&j!j!q~J~~$JyU~ (zero) &ih&inrr!r?tnt,r tiii
I


a)


WXJI uu: ~ *
Is


R?PM extreme value w maximum tfl n t


I ~


tang ( even number) I:: f(n)(xo)Co


b) PhDJ extreme value iSJ?:Llb  minimum ;;7 n &arj


(even number) ua: fCn+xo) > 0


t
c) R7WloJ  extreme value &W&l inflection point ik Lib


J
La'JR (odd number)


FI&N W3LW?:~ relative extremum 91114 y = (7 - xl4


'3711 function ?ki%4lln1;  f'(x) = - 4(7 - x)3 ?kkbhiJp~t& x il 7


LYiJw&l  x = 7 &i&J critical number UlU x = 7 ah function


iftiqUfYI;l;~r?f:'lnl  y = 0 &I&J  critical value 804 function ifiW&


Lbtfqhm critical number PJ~U  second derivative Lf71&


fu(x) = 12(7 - x) 2 1'II~ f"(7) = 0


tB,?=~~~Lf?WV?U,ULL~PT7 derivative &Xl critical number lhttq


Ii&&Id
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f?x) I -24(7-x)  && f':'(7) =o


condition(first-order condition)


candition(second-order  condition)
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44 1Wll &I necessary condition d’lUfi  extreme value %J4  z


kW%i9?tW  extreme value %tN  z ll&BIW Total  Differential


l*WWl~tIlAh7l  extrems  w&e  %W 5 t lti&ljBz  aqflhrl;;r;la4tiS


W (z must be ih a stationary position) ii& de=0


&37 take total differential lhiil  z = f (x,y) 1t?9SlGl


fY =o


1 I&PIt


function


a9ltflnpl~


E


I


kl&l&IU~~ (condition) #iiGbJk~~ extreme value ltW  2


f~;?d,i;ontlnl, ii de = 0 9% fx = fy = 0 ‘l;ll%nibiul,:thtW*&


p%Cqd dz  = 0 ~70  fx = f = 0 ) ‘i/qn
Y


extreme value EN


hi$lIAp%~,9Ltgn saddle point $0 inflect point 3; 38.;


4.12 Ufl:  4.13 %ld


d4 . 1 2 @if 4.13’


%@d 4.12 v C h& TX Uf% Ty ?! slope= 0 klh saddie point 11~1:


;7l&llfWlBJhJG oyz  plane minimum point
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d2z = d(dz) = a(dzj  dx +
a x


a(dz) dy
7


= a (fxdx + fydy)dx  + 2 (fxdx + fydy)dy
a x "Y


= (f=dx  + fxydy)dx  + (f
YX


dx + fgydy)dy
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=  fndx2  +  fxydydx +  fyxdxdy +  fwdy2 dx2 = (dx2),,.:


=  fndx2  +  2fxydxdy +  fmdy2
dy2  = (dy)2]
f f


;;7r*tiioum~~ xY=  YX 1
(4.2) u l d⌧, v 1  dy , a E f


xx ’ b E fyyh z fV  [ = fyx]


t8??:a=&tf?t?h  d2z  = f*dx2 + 2f
v


dxdy + fyydy2


quadratic form q


(4.3) q = au2 +Ehuv f bv2
Y
fl'Xi%lf'Pl'ilJ com)oLeting  the square ll?l%Rl  (4.2) %i4i!


2hvq = a(u2 i --g- u c
2


s


= a(u2 +=u + h2v2 + iI2 h2v2
a 7 a-7


2= a(u + 2%. h2v2
a


+a2
)+(b-2,5 Y2


= a(u + h Y I2 + ab - h2  (p)
ii a
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Q = a(u2> + h(u.r)


+ h(vu)  + b(v2)


R~mtn~~ulJ'l~~u~llw4 matrix multiplication I;;xO


9 = [u v]


Determinant 9104 2X2 coefficient matrix D3 a h


I I


o= 6lENnojn:uflnl;tr?
h b


llf&l extreme value WQz l&l maximum II% minimum fi conditionlijd


flUp)gN4.2))


1 positive  diffinite (z
'


negative difinite (z maximum>


k lH.,/  ~&I First - order Hessian Determinant


&l&J first principal minor WJ determinantD  W H2
I I


determinant


oh& Second - order Hessian Determinant. &~"&


B h Ii?8 f fw
X X


h b f f
u YY
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km;?J  1) 'W&l q - 5u2 + 3ut + 2v2&poeitive definite I!%


negative definite


Y'l&~n?~h~ft'  discriminant XN q %l 5 1.5


1.5 2


&I principal minors "Rn 5>0 ua: 5 d.5 = 7.75 > 0


1.5 2


LIWl:tl&  q lb positive definite


2) ffnm  function e I fhd6i wo( dqrn -iunction  fp.: -2,
fVfl &azf m-1


l ☺☺
WI&? p1 $I d2*l& positive definite &I


negative definite


m function hhlUn~~ descriminant llW d2z %I


fP f
w


-2 1


=
fY= f 1 -1


YY


&fl prinicipal  minors &


IH,I = -2 c 0


/H21 =I-:  -1 j = I>O
~WKl& d2z l&4 negative definite


5 Extreme Values of Function. of Three Variables


WJ~u'  objective function lhMJ~Uhiitn)t&T:  3 h? LA


e = f(x,* 49 5’


da take total differential L&J objective function 1 mzl~6d


(4.6) de i: f,dx,+  f2dx2  + f3dx3
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(4.7) F(~,x,+~,x~) = 0
.


Lf'l@lU'WWl  partiai derivative l&l


fj, r aL
-QF/axi (i = 1.2.31


aXi *F/a.


G$flklt;l&lll WW first-order condition of extremum


&ltlKL& 'i c'itil f, * f-2 9 f3 1 9Gm$&a, 0 -F/-xi  = 0il


9711 first-order condition rtWwWH+~U?olWr  critical values


Wlqobjective  function 1; mArwtwG&  critical values dLtVhll~In'


lkritu maximum Mi?O minimum L&NLMcritical  values IfihWU;na~~U  d2z


lt&Lf7%'lfMWll?l  dZz &t&J  negative definite, critical values i LY7


fi'I.l?Dilklk~~:Llb  maximum value of the function ll&~Y$Tl~Ul'l~d2z  l%l


LitiJ positive definite, critical values %i%l?oil;;i;o=lihl  minimum value of


116


the function


mhwu& d2z%tifU  positLve I& negative definite Wtlhlnl


fid l!7:Mfllf6h%l?I%Lf'&  take total differential &% (4.6) d?&
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( 4.8 1 d*z P d(ds) = w dx,+e~~+b(de)dx3


-I -2 a=3


=
+.


(f&c, + f2%  + f3dqMx,


+ 2 (f,dx,+ f.&+ f3dx3  4
=2


++
(f,dx,+ f2di+  f3d.x3)  3


= f,,~~+f,2dx,~2+f,3dx,dx3


+  f2,%dx,  +  f22dx;+  f23dx2dx3


+ f3,dr3dx,+f32dx3dx2+  f dx*33 3


(4.9) kldllf%lldl~ a,, H f,, 9 a,* ,= f,* ( =f2, 1, a,3=f,3(  = f3, 1


a2* 5 f2* * a23 s fr3 ( =fp 1, a33E fT3


Y = dx, ,u2 = dx2,u3tdx3 t:~i  q E d2z


(nym&  (4.8) d~tOL~UUt~"'ltbi\;;ilo


(4.10) q '= a,& + *a,2u,U2  + *a13u,u3  + *a23u2u3  + a22uz  + a33$


&du three - variable


(4.10) 5?umr~*I~ul?u


(4.11) 9 = a,, (u,


quadratic form LKI:  thhl, completing the square
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+ al1a22  - 92


l ll '% +
alla23  - a12a13  tl


PIP22  - al2 3
>2


+ a11a22a23  - a11a23  - a22a13  - 53a12


alla22  - al2


+2a12a13%3(~3)2


,
97n (4.11) tt?kn~ neceseary  - and - sufficient condition


&~#Upoaitire  definite ntN q iliki


I> all> 0 [that the first coeficient  be positive3


2, alla22  - al22 > 0 [that the aeeond coefficient be positive 3
(a,,  > 0 already)


3) the numerator of the third coefficient>0


(a a,, U-a12b0 ma41


&JiJRTll.lWlULAliil~7 all three principal minor TIM (4.10)  rhnn  &I
ID,/  i al,>0


/D2/ = ':: ; >O 11Bs


I


all 92 a13


ID31 = a2l a22 a23 > 0


a31 '32 a33


h7lJRfGiil~lll  YNWl~tRtl(4.11)'LfT&  necessary - and wffiaient


condition blllfinegatire  definite nfl-4 qilhjiT


1) a,,<0 [that the first coefficient be negative3


2, va22 - a$0 C that the second coefficient be negative3
(a,, < 0 already)


3)  the numerator of the third coefficient<0


(a1 la22 - a,2> already)
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positive definite (z  minimum)


d2z o=iih


i


;;7


negative definite (z maximum)


b,h  ~H2~~O~~~3/)o


IH,h  /H.&o; /Waco


4-4 IH,I*(q~=  /q &principal  minor of Hessian determinant


97n (4.8)  Hessian determinant *rm


fll f12


IHI  = f21 52


I f31 '32


f13


f23


f33
I


fll 52


I


Ire 1% 1 = xi


f21 f22


+i+lW  Wtyl extremu8  value (a)  %iQJ


z i 2x; + 4x2+  4x; + 4x3  + 3 + 2


killill LI?hhW%l'l Critical Value SflDJz '9711  necessary condition for


extremum ~~&U &L&J  set 1; first partial derivative 16ElJpi


,,?I&
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*1 = 4x, + x2 + 5 = 0


*2 = x,+8x2 = 0


*3 - "1 + 25 = 0


dtWdihudUfnYdti?U  homogeneous  linear-equation syektem  UfKL iifl  *J937ww


du*ttituadt~kk (independent) (kh determinant of the coefficient wtri+


doea not vanish) tnrw&L solution tP&l equation ayetern  &Al


rwfl x, = x2 - x3 f 0 fiuul'ilfl LM X,*X2*f bhM&dlU~Yi


o'namZ;Lt79ZI~ Critical Value nfN  4 &Aii2 (ii&,-  t 2) lmr~lll


t&it&W&l critical value 904 c iMU maximum U% minimum 4-4 1M


~fUtlp?n Second-Order Condition (Ii%eufficient  condition ) I&#


nn Bnction ~~MU~II~L~'N? Hessian determinant &I


ill 112 *I3
4 11


IHI = f2, f22 f23 = I 8 o


*31 *32 *33
7 0 2


&ii principel  minors hjup


&I = 4 ( la21 = 37 * pi31 = 54


44lJ,%& principal  minor8  are all positive Lnt,:~~~d~~~;C;7Critic~


ralue(E  = 2) ll?U  minimum value of e


6 Extremum  Values of Function of n - Variables


htriil
"


objective function ~~:lMUWXl choice variable hwnln Ib


IlWkWl maximum I& minimum WJ function iihllnofn~n~n&ukhn~


function lkOfdl kJ choice variable L&N I,2 I&l 3 fh & ~&4hQl'l
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necessary condition(first-order condition) UX sufficient condition


(second-order condition) 8W function thdl;


f+mmi function & 2 = f(x, , x2 . . . . , XJ


9711 function da IV"n7mUBI UUULt'ltllllV0Il'I  total differential 64i II


(4.12) ds = f,dx,  + f2dx2  + . . . . . ..+fndxn


44 rdol;;riblllmll necessary condition(dz = 0) first-order partial derivative


(f, . f;! . . . ..fn  ) Wk~kiil~~  (zero)


fhMf'Y stlfficient  condition l%llY7 take total differential L&k


(4.12) W&d22. &D$tl@iW n - variables quadratic fornUfG%!  Hessian


determinant &I


fll f,2 ..".fla


IHI = f21 f22 . . . ..f&


fill fti  . . . ..fm
I


iq n principal minors ~~F&WkW~ihU?fl~tul?l  critical, value cf z )=L ihl


minimum &&n principal minors flL&lWlUMiil~~~  first principal


minor ~~f&l~~~LitUuBU  critical value of 2 ihi9~Lihl maximum


&&r&a@  cbnditions ff--lfll  maximum tdio minimum YIW


function  $&nnt,~ti  4.1 ;;?dwi!
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Conditions for extremum: z = f(x, , x2,...,x n)


Condition


First - order


Second - order


Maximum


f, = f* = . . . =fn=O


( o r  dz t 0)


Minim


*I =f2=...=fn= 0


(or dz = 0)


IH3~~O;IH4~. O;... ,


(or d2% negative definite) (or d2z positive


I definite)


7 mt~,~;7d~dnu~~~nn~urnti?n~rmrmtsn


(Extreme  Values of Pnnctions  with Constraints)


7.1 MfHl  critical value (First - order Condition)


A. Substitution Method


&I&l Objective function kMU& *rm


(4.13) a = 4 x2 + 24


UZConstraint hlbllnl;: 6


(4.14)  4x, + 2x2 = 60 & 44 +2x2- 60 r o '


nn (4.14) bfm?lJ-i  "2  = 6o - 4x: = 30 -2 2x,


u&l x;2 m--hi  (4.13) dn'  u =x7 (30 - 2x, ) * 2x,


= 32 4 - 2x:


&3&l?  mm critical value G$ml.r&~~*&~r~hlilfllJ  set 2; partial
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derivative ddiiqli Kd


eu-=
-l


32 - 4y1  = 0


nlY?mAJ x, = a


UlnA  x, a&J ( 4 . 1 4 )  ,&-il  x;! = 3 0 - 2(a)  = 14


uMup;I  7 ~0::  5 aqlu  ( 4 . 1 3 )  9rli critical value U P 128


2
uar.umA  BD = -4Lo LW?%& critical value U = 128 hit


9


constrainted maximum of U


B. Lagrange - multiplier Hethod


-ph&ild* Iagrange - multiplier method t%mdiiulh


conatrainted-extremum  problem lklilU@ (form) tl?:yi?l~  first-order


condition && free - extremum problem $w‘vQ&~I'I~~~~


qqU objective function Ua::  constrainted  function dniuu*l;lu


section A8fl U = x, x2 + 2x, uas 4x, + 2x2 - 60 = o fWa%Jlt~


d?w,orluu,a~~~~~~d~~~~,~U~,,  augmented objective function 1%


(4.15)  B = x, x2 + 2x, + A ‘44 + 2x2 - 60)


h(the  Greek lambdaJLIU7&  undetermined number &&JU'II Lagrange


(undetermined)multiplier  ;;7tf787U?f"ni?UIL~'ijl~~~'I 4x, + 2x2 - 60 = 0 0%


8 l%r1wliiiJ  u 12;; &iLiiL;RzfhU li& I;nnYY;?Lf~?U?fP~~~BJ(convert)


constrainted functionU~~f!;?U@lfN  free - function 8 rt7axrvnG%mf


Bq critical value $84 free-function i;J&klXl~~IIl section UQU 1 W


l&q critical value '1If.N  B ~~~s;ll~AU~~
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e, (iae/ax,)  = x2+2+4h = 0


(4.16) B2 (aas/aX;!)  = x, +>A = 0


5h (raEI  /a& ) = ,4x2 + 2% - 60 = 0
“.


9711 (4.16) LYvsVurm  solve solutions $kJ#


x, = 8, x2 = 14 IIIP,’ A 5: - 4


1d*M&-l x, , 4 ttn:: h n\ilu  (4.15)  ~no:‘l~  B =128 &km&u~&x, , x2tte a


%AiTdlL*m~~lJ  x, , X2 LL~::  II lusection  A ~JJ$$&


B.l GeneralimtiOA


%fllfWJ3  &grange - multiplier method


&llli!


d!.lJ?~;?Ob  jective function %lklUun~&l


(4.17) = f(x,y)


UCconstraint dtilnu:~l;  %I


(4.18) g (X,Y)  = 0


~fldlll?S~l%JIl augmented objective function~kl


(4.19) 5  =  f(x,y) +  hg(x,y)


~&BI~%$,-$?~&I  (necessary condition) fMih-m47  critical value '1843 i+k
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ax = fx+ hg, = 0


(40  19) B =
Y fy + As = 0


P


4 = g(x,y) E 0


1 fwnfumf  3  TEN  ( 4 . 1 9 )  f&3  c o n s t r a i n t  ( 4 . 1 6 )  l&N twtw%*ttSuuZjn9 d


lwhll;;;? critical value of augmeted functionB1&I i~tiMIlJL~EiU~'Eifl'd~  constraint


*aq function 3 &l4w"Lsudu;l,lilf;;?  he(x*s)  z 0 LlWt:Q&critical  value


5ifN  BlU (4.19) iJlWln'y critical valuetlm 3 IU (4.17) n?olGkx%  (4.18)


B.2,a - Variable and Multiconstz*aint,  Cases


&lU?l'hobjective  function b


(4.20) 2 = fh,, 5, . . . . . xn)


u’o:  c o n s t r a i n t
.I
nri?iunit; %I


(4.21) g(x,,x2  . . . . .(  xn  ) = 0


~~~Lf?'rl?OI"a5Ql~tlllaugmented  function ltYi%


a = fJX,,X2'  . . . . xn) + g(x,'x*2 ) . . ..Xn)


&&Qln~,lu  first-order condition '$%JQI.I  (n + 1 ) '&f1~6$


% = f,+ hq = 0


a2 = f2 + hg2 = 0


. . . . . . . . . . . . . . . ..ee..**


an  = fn'hgn .Ll


5h = g(x,*x2,  . ..*1  d-,1 'I 0
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‘Lund * ‘I”- hinwn  WI constraint function wwin1 4 function 1 r4h


l&fTlr Lagrange-multiplier method InY~lri; 1~UP;L~JLf?L~iltiplier


l;;wlnk%musiurum*ilJ  constraint cl~&J#llLk%LO~


dll&'l ob jeotire  function dniw*~&  ( 4 . 2 0 )  uns  c o n s t r a i n t  ihmm


6% (4.21) l&Z  (4.22)


(4.22) h(x,,x2,  . . . . . . . . xn> = 0


~mnlnfnt&ll augmented function 1itid


= f(x,,r2, . . . . .


ghu firs:-order  condition


xn' + xg(x,,y....,xn)  +/u h(x,,x2,-xn)


9&huaumf~wn  (n + 2) aumr i%


'i = ii + )ig, +//Q hi =i  0 (i = lr2,...,  n>


Bh = g(xp2,  . . ..I s’ = 0


Y = h(x,+, . . . . . xn> = 0


;d4 L?WWtQ  solve a7~41oj  ‘i( A U% y 1;;  G!fnf,r;l~~$~Llu~*~~ll


-ented  function iTWInY  constraint critical value WUJklW~t


C. Total - differential Approach


ddi objective function %I


z = f(x,y)


lundnaq  free extremum analysis ir7likhr&7u  section (4.5)  ;?


neceesary  condition %I


(4.23)  dz = f,dx + fydy = 0


Lx Ua: dy %&i diazhfi&~mn~~  (arbitrary  variationa)
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dwlb?i;?  constrainted function h-imln~~~ dX,Y) =


(4.24) dg = gxdx + gydy  = 0


,~,Wdl  dx ll% dyh (4.23) W$n constraint hJ (4.24)


necessary condition $l?M% constrainted extremum


da = 0 (4.23) subject to dg = 0 (4.24) 9%?nl?  scjlve


(4.24)  ~!'?M'lhlUd?~U (4.23)  Lt'ld&


(4.25)  fx = 3


gx gY


LWf?“&l  (4.25)  %riftd necessary condition for constrainted


0 filti


extremum VW
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0 s Cfxch + f,4>  d x  +  Q$-Cfx dx + $4’ 4


=
I
f,dx+  (fwdy+ f "d9)


9 8X
&


3


+ foxdx  + (fmdy  + fc ‘4 )rdl I 4
X f,dg + f+iy dx + f @%!a k


Y 8x


fJ *dx+ **a,
L I


m f;yd(4) = $d2y


lW%U&  d2s 5lkdfl


(4.26)  d2s = f&ix2  + 2fs w + fndy2 + frd2,


t&Wi con&mint  5hMll*I;;iTo  g(qr)  = 0 lIlt~Q&  k-0 IlW


d2g = d(dg) = 0 i;l”%‘l&&b’l,tn(4.26)  Lt& d2g fiii


(4.27) <d2e - 1 t3&.x2  + 2gv dxdJ+g dy2 2
rJ


+gdj=O
7


Solto  (4.27) L&m & l&O&l d2r dhl  ( 4 . 2 6 )  WI& d2z


quadratic form iktd
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f
d2. = (fxx--j!


f


gY
gxx)dx2+2(f  -1,


xy By XY ) dxdy


f
+ (f 96YY- $37 ) dy2


Ll'lt'l:Qdii d2z = (fxx +&g=) dx2 + 2 (f
*y +h& kdJr + (fyy +Agys)  dy2


;;?Lf'lM'l  second partial derivatives ?'%l (4.19)  if'W1a


(4.26) d2z = exxdx2  + B&x dy +Byxdydx  + 0y#y2


;fj coefficient 904 (4.26) ~;;p?nmrtake  second partial derivatives A%


augmented function l3


n&+zuon;7  extremmim  value 38.1 5 = f(x,y)aubject  to g(x,y)=  0


maximum& minimum l&ka;fiil second-order condition b d2z ;W?u


negative definite &r& positive definite ?~&+W'Rl~~R~~~~~~~d2z~


'fl~;,L,,~ranS~KlniMun~,aoj dx uaz dy ~;;mu?-J4i*lJ  uAk;oJn7*nmrmaJ  d% ua:  dy
. I


'L;+til;,im~~likn  ds = O(4.24)  5&r,%l~1~~7


Fer minimum B : d2z positive definite, subject to dg = 0


For maximum B : d2z negative definite, subject to dg = 0
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B. Bordered Hessian Determinant


‘Lufdimi  fr
Y


ee extremum analysis I& second-order condition


1U@D4 determinant *~~'Il%Wl'l Hessian determinant izhCi..unfi~ec


4
constrainted extremum analysis lY~tilli'lRll%JU Second-order condition It;


D~~u@lfi~ determinant ~klL&l%%  &I determinant dLf?L&Ykl  Bordered


Hessian Determinant


1BU?&ilj'lMDW~~%VRi-?~$l~ Bordered Heasian  Determinant Y@lGrr?


J!??LLRf%;definiteness  plD4 two - variable quadratic form, subject to a


linear constraint GkklIJ  iii9 Al


q = au2 + 2huv + bv


QliiHu"l;rP71&


subject to du c pv


: = - ("/f 1 n


=o
99fl conetraint ?!~rbLMl~UYiu&d~~U9  9:


W?l; q l&l function ma t&J&i$i~(q  as a function of one variablexd


positive definite I&lL?kl expression luw rt


ij~f&munu~huan~~~:  4 9: tih
4ae  d


negative definite DRDlzI?l expression ‘hn~ LB


7rll~~4HU1uLl?u3UPY


k&IWwI symmetric  determinant


0 6
P


&ah = 2h441  - aPL - bat


? h b


&~A,*% - cap - f2h@. +b&
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satisfy the equation&u  + 1 v = 0 LT%i'llJ'lfDd~~~&'l


q is
1


positive definite


negative definite 1


0 6
P,


iff da h


i


CO


' ~~Lf'li%Lnfl  Determinant If Lf?'%&lI  i ' t [ l%'Lbdiscr~~inant


of original quadratic f0rUl Uaz d,b $fj coefficient 4104
.


constraint function GlitN


il1 DLS'I apply frV"?LfV%I&~&r&XiiJ  d2z IU (4.26) LW'~::L&~& u


Gh dx ua::  v ti%a  dy i!UQzl 0 constraint #lfi’lW~?;t94  (4.26) %I gxdx+gydy=O


second - order condition k!


Positive definite O SC gY


d*z is
CO


iff gx % 5q
>O


Negative definite 5
gY YX


a
YY


Determinant O gx gY
Y


gx %c Bxy
Y-4ul,$?  Bordered Hessian


z 5
gY YX YY


value BDJ 0 = f(x,y)M%


'41'35  0 = f(x,y) +.kg(x,y) 1"
.4


M, LfIf%lMU'lU%lQ  Bordered Hessian  determinant
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4
l&i+& /ii/  Zhfmmanuijuraan critical 9alueflD-I  5 lXl9:S& relative maximum


'" - 4
u~M /HI ~lBf8-1WMUlihla1~  critical value384  0&9::& relative minimum


c. xl - variable case


L&I objective function fl&qd


5 = f(x, 9x2 ,.....,xn)  eubjeot  to g(x,,%,....,xn)  = 0


*&$&critical value WI\)  ~9::LiIl maximum I& minimum (second-order


condition) nindd*i&,fij84wnvqa4  d2A tbmlyw?~ti?um  mi%.nSinrti  43 tt


function flpq  choice variables r$~ 2 6 &-3-Wf1  d2z '%q?U@ quadratic


form of the variables dx,, dx2,....dxn  subject to


( (dg= )g,dx,  + g2dx2  + . . . . + hnd”, = 0


11 d2z l&l positive definite &I negative definite %W%Ln?l~fl$8J~tl


%1\1 bordered principal minors of the Heeeian


&W& bordered Heeeian tltiwu*@l;l;;  i% '


0 q g2 l .**ni&


IHI  = g, z,,  z,2  . . . ..Zln


g2 z2,  z22  .....Z2n
. . . . . . . . . . . . . . . . . . . . .


8, zn7  Z&  . . . ..z.


.


~~WUI?TC$~~+I~  bordered principal minors 6%
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c 91 g2 0 g1  g2 93


I Is = .q z,, 212 p,\  E q 3, 212 7-93  etc


g2 51 =22 82 z21 z22 '23


2 z31 '32 z33
1914  bordered principal minor bqflk pin,1 1YlGll  \Ti/


lurid n-variables case i! conditions for positive and negative


definiteness of d2z i%


positive definite


d2z is


I 1. i


Iff lii2b  /q, ..+p


negative definite jii2/>o;  Ii31co  Iii  J>o;  . . .


1trlswt  4.1
Conditions for constrainted extremum : z= f(x,,x2, . . . . . x,), subject


to g(x,,x2,...,xn)  = 0; with % = f(x,,x2,...,xn 1 +hg(x,,xp..,xn
)I


Condition Maximum Minimum


First - order 5, = e2=...=  en = isA= 0 81 = E
2


= . . . = =n ,gfi = 0


(or dz = o, subject to g = 0) (or de=o,  subject to g= 0)


Second - order \ig>O;  IEJCO;  lrrJ>o; Ir;,l Iii,/  +.t Iii&o


(or d2z negative definite, (or d2z positive definite,


s ubject  to dg = 0) subject to dg = 0)
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Allen, R.G.D. Mathematical analysis  for Economists


(Macmillan & Co.,.Ltd., 1971) liM4  14


Chiang, Alpha C: Fundamental Methods of Mathematical  Economics.
8


2nd ed. (McGraw-Hill Book Company, 1974) IJW?  9,11 llR= 12


Kooros, A. Elements of Mathematical Economics.
I


(Boston : Houghton Mifflin Company, 1965) I&! 5


Read, Ronald G. A Mathematical Backnround  for Economists and Social
A


Scientists (Prentice - Hall Inc., 1972) NW 9
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(3) = (4) a-bP = -c+dP


(b + d)P = a+c


PE  = a + c
b + d


QE = a - b  (a +  c)
b +d


= ad - bc
b i d


&d = 120 - 12 P . . . . . . . (5)


Q, = - 27 + 9P y . . . . . . . . (6)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


i?hi


rd fpn7rm~nn7f3
Qd = Q8, = QE


rGl5.l  (5)  = (61, 120 - 12 P = - 27 + 9P


21P  = 147


P = 7
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0,  - 120 - 12(7)


%I = -b.  + b,P, . . . . . . .(8)


Qd2
= q+acp  -0cp


Qs, = - P,  + x’p,


t 2 . . . . . . ...(9)


. . . . . . . . . (IO)


ask (7) = (8) , Cd,  = a,,


ao-  a  P1 1 + a P2 2 = -b.  + b P1 1


-a,P,- blPl + a2P2  -- - b - a
0 0


1 4 0 EC 215







(a,+b,)P,-aP  = a +b2 2 0 . . ...(n)0


I
44


Ml?9  Cramer's Rule r&l


(ao+  bo) - a 2


P, =
G$-  po > - ("Cxf  P, J


I


(a , + b,) - a2


5 - y+po
i
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( a ,  +  b,) (a0  + bo)


Oc,  - (do+B.  )


p2 =


I


(a,+b,)  -a2


5 - (oc,+/?


-


1


- ( a , + b,)( 9 + fj ) - 2, (a0  + bo)


pE2  =
- ( a , + b,)(  “&+ b ) + a2f
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‘E2 =


- ( a , + b,)( *,+ /$  ) - 4,  (ai,  + bo)


-(a, + b, :I( d2+p 1 + a2d,


.!4UURC
Q = QSl : 10 - ZP, * P


dl 2 = -2 + 3P,


-2P1 -3P  1 + P  2 =-2-70


-5q  + p2 = I 12 . . . ..(I31
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Qd2 = Qs2 : 15+?  1 -P2 = - 1  + 2P2


P,-P 2 - 2 P  2 = -1-15


p1 -3P2 =-I6 es....- (14)


I- :,z I :I,- 36 t 16
P, = = I:,  - 1


= 52 = 26
14 -7


I -5 I - -16  12 I 80 + 1 2
P = =
2


- 5 1
1 5 - 1


1 - 3
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II







4dl = %I


Qd2  = QS2


Q =a3 Qs3,: .


Q dn  = Qs,
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2) Point Cross-Elasticity of Demand


3) Point I ncome Elasticity of Demand w
ClUHiUfl4  likJ?lk Arc-Elasticity of demand Gmnr  m& ocnldn 3 &I tkfu


f&4*


19 Arc Price Elasticity of Demand


2) Arc Cross-Elasticity of Demand


3)  Arc Income Elasticity of Demand
VI,


7: t;tulnm111;77:  tj,  Point G1;(a  Arc Elasticity of Demand lfld
1


Elasticity of demand mB 3 rtin do Price Elasticity of Demand,


iross-Elasticity  of Demand lln= Income Elasticity of Demand
Y


Price Zlasticity  of Demand ulnUh,,U,@l 1&3r,maumaiin


i, l~uull~~lJ  1 1l&fJu9Y  1:vi.~~~~UI~?*Jnbo.rau~a8~ul dUUUlbJl 9
4


rltEl;tnu;  Iii&
I *


P, =
~Ilor’wvht ,$uuulloJao~Qu\ar?~~~a~~aun7  x
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Function h Avcrqe  Function fin??&


Q
I Marginal Functioh


1
Average Function


Y Y A


nit&4  tbfhy4~n4aun7x  ih


Qx = IO- 2Px + 3Py  + 4Y


)4#1 (n) Function of Price Elasticity of Demand


(a) Function of Cross-Elasticity of Demand


(n) Function of Income-Elasticity of Demand


(n) Function of Price Elasticity of Demand $0
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?


aQ,/=
x


P* =
QJPx


= - 2


IO - 2P* + 3P + 4Y
Y


= - 2Px


IO - 2Px l 3P + 4Y
Y


(q)Function  of Cross-Elasticity of Demand *REl


yx4 =
~Q,/aP,


Q ,p
x Y


= 3


10 - 2Px + JP, + CY


P
Y


= 3p


IO - 2Px + 3Py + 4Y


fa)Function  of. Income Elasticity of Demand 2%


4
=


IO-2Px+3P  +4Y
Y


Y
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= 4Y


10 - 2Px + 3P + 4Y
YYl


ymhkk mllR?l
4 I


Function of Elasticity of Demand 1lnl
l


'?3:tlh.i  Fwction of Price Elasticity cf Demand, Function of Cross-Elasticity
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t
Elasticity of Demand a;, Cl


u"UL uthitinbi  lLflt?l  Income EffectIf'* 'I


I 4.!
UnTfllyI  Price Elasticity


I " Y
udRJ"r7aUPilUULLfUGiffen's  Goods


‘1 4A
UflfrJRCross-Elasticity


Income Effeci  11 uY,rcnlu~n~;?~un;


(MTdIncoae  Elasticity) U4X7LihU
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p2 S.R


5.2.3


eR=
a + bPs - cPc + dPo  + eR
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Marginal Function
rl r,Pr =


Average Function


= AT/TN AT . OTs - -
AT/OT TN AT
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QXI
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BT OT OT= _. -=-
TN BT TN


em  =


UR  : ea E


AT-
S T


AT-
OT
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1 Zen: =A P/ST
S,Fi. ea AT/CT


@, D


Qi ----l  n
‘ii‘bi


I+---  ; -_---_  6 .--c
I :-T-L
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AQ


F2
= - -


13 P
- -


pl+s2
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, Y Y Y


utm~?nn?r~Arc-Price  Elasticity of Demand ?hl~'tVll~flUU~?fnrl.f7


Arc-Cross Elasticity of Demand URZ Arc-Income Elasticity of Demand n'
Y


u7lduniuelr ~4wdii1


&n?rvTArc-Elasticity of Supply
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I
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I
k ---------I I
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I
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Total Expenditures for Import = Pm(Excess  Demand)


6; P (Excess‘Demand)L(PoP,)(09,)~~1:?n~Import  Policy
Y m


n'l  P (Excess Demand)> (PoP,)(OQ2)rj9:l'f  S:bsidy  Po1.i~~


'd = lo-ad


Ps = - 2 + 1.3 Qs
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3 = -2 + l.Xs


vii@ Qs = 5 =


1.3


- 50


13


Ps = -2 l 1.3(7)


= 7.1


41P
13 m


= 28.7
"1"


= (28.7)(  13441)=  9.1


164


Demand : A
Qd


t lo- 4P, + 2PB
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A
SUPPlY : QB - - 9  +  3P*


I
nfnnih  B


Demand : Qd B = 1 2  + 2P* - 3PB


B
I Supply : Q, = - 4  + 2PB


tmnw 7~31 I


N ~Li~m~4nnlfI~Un~  Bq Qi - C$


12+2PA-3PB  I -4+2PB


12 + 2(b) - 3PB = - 4  + 2Pg


5P, = 24


:* PB = 4 . 8Y


(u ,:~Y7n7IjT-n’&
AQd I 1 0  - 4(4) + 2t4.8)


5 3 . 6
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p1 = IO - 7.69 = 2.31


‘Jutl  rua4nnr~n7ti:n’ul’hPIu~~  PO= 8 ~UYUf7(r7011,~,n;,,,~,~:~U,~~~(Po-  P,) =


(8 - 2.31) = 5.69


4 n??  ~&~fd (Taxation)
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.


&.I, ” ” n7f ltWmihfl4f&l  (Excise Tax)


46 Pd = a - bQd (a,b > 01 . . . . ..(I51


?IJy17u  Ps = c + dQs (c,d. o> . . . . ..(16)


= PE ;


I$O (15) = (16) o
MjD


&i,Q


Q,= 0, = QE


a - bQ, = c + dQ,


a - bQ, = c + dQE


a - c/b * d


pE = a  - b( a - c )
b+d


= ad  + b c
b+& . YY . Y Y Y Y
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0 c + d(a-c-tQ)


b id


= bc + cd + ad - cd - dt
0 +*6)”WA,,“,  s
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D = 20 - 2P . . . . ..(18)


f pd v,= I0 - o*5D
. . . . ..(20)


9vwJnwnig rt77mi hppiy  Pas;la


Ps = i +Is . . . . ..(21)
‘ J


Un  LuOvfln~j LlbdSpecific Tax3?zUfm? rA5J2


LTiY7~QdI  Supply price after tax = Pi =
Ps l fc


s+  2 . . ..(22)
T


s = 0,


iil~o(20) = (22) 10 - 0.5D - 4+zs+2


in
3 3


10 ,.- 0.5 Q; = 5 + 14 + 2
3 3


= 8
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TPE = IO- (0.5)(8)  = 6


= (2)(8) = 16
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es, = - 1 + 2P2 . . . . ..(26.


T
P2 =5+$Qs2+2


2PT = 1 + Us2 +4


. . . ..(27)


'd.l = Qs, = (i& ; Y,, = Q,;!  = Q;,


pl
T= PE, ; P2  =


(23)  = (24)  , lo - 2P, + P2 = - 2 + j’,


d;o 70-2F;,+?;2  = ,T
- 2 + 3pg,


T T
. . ..(28)Y -5PE,+PE2=  - 1 2


k-~-;?~  (25)  = (27)  s 15+P,-P2  = -5*2PT


Go T T
1 5  +  PE,-.  PE2


T
= - 5 + 2PE2


-37ndun7r  ( 28 )im:  ( a9 )
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- 1 2 1


PT
Ins


-20 -3 I += 36 20


15 - 7


-5I 1


- 12


PT - 20
E2


= I
-5 I


1 -3


100 + 12=


1 4
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T
Q, = 4s = QE


fTa?il~~  (299)  (311, 10 -1 T
ii FE = %+I T


3 5 % +t


t = 10 - y&r 3- 1pT,


= 26
/
3 - 5/6.$


,wS?:QZtii fl&f7#tllh  hmn R*ir
. . . . ..(32)


T = tQ; .z 26 Q;
5


t? = 26 - 2 (2.4)
J6
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t2 = 2 6 - 5(E)
7 c


. . . . ..(35)







tmax *
26y- f) ('5.2)


~lrln?&jpn?$ Advalorem Tax
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/ld  5.8


nvi7iun-M  Advalorem  Tax
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Ps - c*d53 (d,d)  0) . . ..(38)


a& G (37)  = (391, a- bQ, = c + dQs  + ot c+ to64


100 100


M&l
( b + d + to d) 0: t cz a-c  - 0


100 100


S
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l&~o?n Advalorem Tax to % Wl"R41


fvl7?llU  100 + t0 hmndo:  chii tO
T


.*. f;?f?R1"111U PE 1,
to pE


100 + to


kL& Dd Advalorem Tax vkdJl;?Y~TiJaUAYl = top;


pS = 4/3 * l/3 Q, . . . . . ..(43)


”


,'I@& Advalorem Tax = 5%


.'.Supply  Price m"dnv ~hnd  ii73


PT
S


= PS'5PS =- Ps + 9.05 Ps


100


182 EC215







= 1.33 + o.33QQ,  + (0.05)(1.33)  +ta.o5)(0.33)q,


= 0.24


‘d
=  I O - Q , ...... ..(45  1


Ps = 2 + 1.3 Qs ...... ..(46  I
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37.33


sB


s * 8.33 + 0.83 PB


t 22.33


null


lJf:LMRA


eml&sI  L Gl s Excess Demand


= DA - 'A


= ( 50 - PA ) - ( - 6 + 0.5pA  )


= 56 - l.5PA


LjfZLYIFi  B ?:L~U~f=LYId~~J~u~?~IDn


d?U?LlMl;\l~U” = Excess  Supply


= SB - DB


= ( - 8 0 3 3  + 0.83~~) - ( 14 - 0.33pB)


72 - 22.3‘1 + 1.16PB


&kl”,Ud  f: l?lf!  B lili%l
56 - 1.5PA - - 22.33 + ?.16PB . . . . . . .(48)


188
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*A  = *B t Pi (Inud  PF 30~  Eree Trade Rice )


mn+!  (48)  9:l~lub;jii


5 6 - 1.5~~ = - 22.33 + 1.16PF


2.66P,  = 7e.33


TPA = TPB + 0.5
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I 5 - ( 8 - 0.3  F,)


I - 3 + 0.8 FT


Excess- Demand


PJ e. -!$


* 6.375


0 6.375


- 6.375 - 5.75
I 0,625 mu-
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Silberberg, E. The Structure of Economics : A Mathematical Analysis.
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Takayama,A. Mathematical Economics. (Illinois : The Dryden Press,
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200


u = U(x,y)
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434 marginal utility us> 0) Ufl~;;?JlDJfZU?PL


dqtt~d’d&;?m4$?‘innL~%  B 6&i&&~~4i*an?~z~4  maximize U =


U(x,y)  subject to B = PxX  + PyY =inua  Px ( mll'da4ti~  x ) ua:  Py


(1vl19184&  y ) dil exogenous variable ~onni~*p;1~~~~~~d~I;LLn:~~~~41’iw~,*


&;7&Nnqf maximize U = U(x,y)  subject to B = PxX + PyY f&l%


Lagrange Multiplier ~yWUJ'lyn~%JU  augmented objective function It'd


2 = U(x,y>  +h(B  - PxX - P,Y)


$4 h "%J Iagrange Multiplier


Wn augmented objective function tr7dlmrn~LduU  first-order


condition for maximum~k$


-bZ  zx =ux-npx  = 0
a=,=


. . . . . . . . . (I)


QZ “y JJy-hPy  = 0ai =
. . . . . . . . . (2)


aZ Z, =.B-PxX-PyY=O
bh =


m(i)


Cl.61
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zhCimrhtru72ut second-order condition


Ikh‘d$J~Fl  h Bordered Hessian Determinant ii  LR~DJMlJ,il  dlllm ii&


1/ dlln?f Budget line $&y=  B - Px
TX


& dy = -Px
FY Y


z T
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(1.a) Ial =


indifference curve %1&L& origin &&d2y/d2x>0  & d2y/dx2


lknn,,differentiate  - $ ~fm$k x (with respect to x ) ~Utl'l?


Y


(1.10) dUxdx = %x + %x g and 2 = Uxy + uyy g


( 1 . 1 0 ) ’  dUx
= uxx - u


pX
zi- Yq


*and
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(1.11) &


6x2
= -+-


uy ‘I& - u px>
YX F


- Ux(U
rg


- u Px)
YY-


Y
P


9m (1.7) m1;;;7
Y


!h
dx2


= 1- (2PxPy  uq - P; uxx - P2U
u P2 =YY


>
Y Y
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klP:L%%l~k  the coefficient matrix %I Bordered Hessian Determinaat(  /i/)


iiilm
.
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rkd!
0 -1 -p


Y I
(1.15) (g, =L -px 0 uxy


-Px lJ


Id _ * = +j- -Py u;


Y
0 u


99


(1.16) 0 - Px -1


- px %x O


-Px uxx


- P u
= * -Py uyx


Y PX O


2 0 6 EC215
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I
0 -Px  ;


( 1 . 2 0 ) @Y/(Qp
x=-


-P uxxx


Ii, _ px


T
u 0


YX


0 -  px


- P
Y


u
YX


I -s(@?/@B) + [ 14, ( 1 . 1 6 )


=
T3 + T4 ( T v)WV?~ Term)
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Ghfang,  Alpha 0. &ndamentri  Methods of Mathematical Economics.


2nd ed. ( McGrsw-Hill Book Company, 1974 ) dW 12


Benderson, Jmnea  M. sod Richard E. Quandt.


Microeconomics Theory : A Mathematical Aooroach.  2nd cd.


g McGraw-Hill Kogakusha,  Ltd, 1971 ) 1Ii-l i 2


Intriligator,  Mlchrl D. Mathematical Outimisation and Economic


Theorv. ( Prentice - Hall, Inc., 1971 ) Wld 7


Ulinvaud,  E. Lectures on Microeconomic Theoq ( North - Rolland


Publishing Company,  1972 ) ml 2a
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b . LLU~AR~I;IJ-W  (Basic Concept)
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hod :


0 = @ (Xi/  Xl’ x2, X3’ . ..) Xi-I’  Xi+,’  -0.9  x,,iI


11 James M. and Richard E. Quandt, H~CROECONO~~IC  THEORY  :


A Mathematical Approach (2 nd ed., New York : 6fc Graw Hill, 1971). p.s&.
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x
0


-I__ j
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Q


0 X.1
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Y
i


fj = a6- (a13 LTkJU
A X i axi


oi unu 2 ix)


axi
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MPi


X.
1


0
HP.


1
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iiuuao


n4a
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a 0.p.)  =
a xi


a fx+ 1
1 =


a xi


0 : LLvn1”l A P = P
i


xi


223







@
2


‘., il
klXl - kjc;


@l
= $


x1


1t Ibid .,  p. 57.
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lrvlh
2


m1 = k1x1 - k2x1
**


ml  =
a4
isi1


-1 = 2klx1
- 3k2xf **


nta


#h&J


kl - 2k2x1  = 0


klx1  = 2k
***


2
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lnut.lu1nfitm  :


226


I I I x
1


0
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h


Uh


udiil


A x2
RTs12  = - AT


: Rate of Technical Substitution


1 o f  x1 f o r  x2


Axl+ 0 : n-t7  t1ICluuuJaun~7l&h~u  x1  ihn.mn


lim Ax2
Axl+ o Ax1


dx
% zi21


RTs12
=


- 92


dxl
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ni7n7  XTS  :


d $ = ;$ . dxl + ;$ . dx2
1 2


d 4 - $1  6 dxl + $2 . dx2  : 2 =
axi ‘i


h&J d+ =


nfa


41 *dxl  + $2  . dx2  = 0


K&l dx2- - =


dxl


n% RTS12  =


=


0


-Q2  . dx2)  : I ”fJlU?Jl\)


$1-
$2


(5)
a4


N2)
: Me1 = ax = 41 LLPZ


1


a4
Mp  = - a e2


2 3x2
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Ridge Line (Scale Line)


ECONO!tIC  REGlON OF PRODUCTION
Ridqe Line


x
1


*I ,~u;,,~,w,tn'i~uuTn'\lt~7nl~~qu~na~\l (Convexity of Iso-quantj
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hlpir5o1diivl  :
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EC 215


dx2
- <o


dxl


$O = fb  (x1,x,)


X
0 1


0
I ‘1A x 1B


d


2 3 3







n% &2 >
dxf


n) d_“*
dxl


<
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= =
d+’ O1. dxl +  $2 . dx2 0


n% $1.  dxl  + $2 . dx2 = 0


nul%l d”* = - %I
dxl 67


lbio d_“2  <
dxl


0 : thw (-1  //


dx2 91


d(g) d ( - r2  :,nn,n-\
) . dx2  _ $1


1 = xFl i-2
d xl


d x1
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d cd”2
dx,


1P -
- 2


f 42 ( %I  _


f?
dxl


.$  ( 92,
1 1


dxl


1
34,  dxl  agl dX2 a4  dxl die


$ ( L$*(  _.-  +- ” - ) - q-’ .,- +
3, -2  11


I -
+2


axI dxl ax2 dxl axI d x l ax 2 dX1


21
dx


j
&I  oyKu~-rwy’&  x1  (Total Derivative)


3 = $jl  : iTp@-rsil
a x  .


J


dx
: ttnuhi -2 =_ ?


dxl ;2
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62 ’ 0 = (+I


411  <
0 * (-)


2)  {
##z2  < 0 = (-1


3)  f
912  z-  0 - (+)


-
t21  ' P = (+I 0
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d ( ;z  ) =
_ j3 { L?J


* ,2  11 - 7Y+24,2  + 02:}


dxl


= _.  _l { (+) (-) - 2(+)  (+)‘(+)  + (+) (-) )
(+I


= - I (-) -2 (+) + (-) )


= - 1 C-1  1


= (+)


an, 3
d (dx$  ’ ’


dX1


tThm2n  (+)
//


I


n)
dx
d;i; < 0
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d) ~oniiunl~uouuuuaun75nl¶u~m  (Homogeneity of Production Functions)


II Alpha C. Chiang, FUNJXMENTAL METHODS OF MATHEMATICAL ECONOMICS


( 2 nd ed., New York : ??c Graw - Hill, 1974).  p.403.
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uuuuun7~ Y = f (Xl, x2, X3’  .“.,  Xn)


Tnud Y : 9;7utJwm~  (dependent variable)


xi : K-MLII~?~z  (independent variable) 2i7d “i”


”
ttuuuundlsdl  ronlsoniwaWud  b n’n’s  do


f (tx,,  tx2,  tx3,  .*., tx,) = tk f  (x,,  x 2 ,  x3, ‘.“,  XJ


4(7&u  :


~uHI~~XUR~ILI~~IU~~~~I~  (Degree of Homogeneity) ua~wuwniwk


IJ


n) Y


t


u) Y


*I Y


U) Y


f (x,, x2)


2 2
x1  + x2


f (x,,  X2’ X3’ X4’ x,)


x;  + x:  + x x4 5
x2


f (x,, x2)


2
x1  + x2


f (x,,  x2)


x:+x;+  12
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43ni :


n)


-Jlfl Y =


=


fbl’ x2)


2 2
xl  + x2


~5 "t" du ~7% ~auqiuauq3uuanTJNL~liiUdFau~J-i~as-uln~a


f (ty,  tx2)  = (tx,12  + (tx,)  2


= t2x2  + t2x2
1 2


= t2 (xf  + xi)


= t2 f (x1,  x2)  : f (X1’ x2)  = x;  + x;


!iu?la
2 2


Y =
x1  + x2


~~a~In?lMdu”LO”lSunlwai~u~  Lu


(Homogeneous of Degree 2)


VI


?In Y = f (x,,  x2,  x3,  *” xs)


4
= 2


+ x: + x; + x5


2


f  (tx1, tx2,  txg,  tx4,  tx5)  =
(y4


( tx2)
+  (tx3)‘l  +  (tx,j2 ( tx5)


4 4
=tx
1 + tjx;  + A+,
tx 2
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t3 x; f t3x; 3 2
= x


+ t x4 x5
2


= t3 f $3  X2’  X3’  X4’  x5)


chun’o Y =
4


7 + x; + x4’  x5 i~hwn~sdii tanlTurrw  f76uii 5
-
x2


(Homogeneous of Degee  3)


wn Y = f \X1’.  x2)


2=
9 + x2


242
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3)


o?n Y = f (x,,  x2>


2=
7 + x; + 12


f (Wi' tx2) = (txl)Z + (tx2P + 12


* 2 2= t2x;+  t x2+ 12


8::  ldU-;l  1&1u11ock  tdrru  f (tx1, tx2) ‘LwafJu~IJWu t k f $9 2x. )


I - .nudimm1qns .


truuaun77nlsw0n @ = 0 (x,, X2' X3' * .- 2 XJ


TRlJd + : qiu-mwawS (output)


5 siu7uililTunl3&% (input) .dfl&  i (i = 1,2,3  . ...,  n)
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ttuui=wfnmiwSim 9 = 9 (x1,  x*)
c
= 5x2x31 2


4 ctxl, tx2) = 5(tx1)2 (+x2) 3


= 5(t2xf)  tiq


5 2 3= t 5x1 x2


5 2 3= t (5x1 x2)


= t5 4 (x,, x;'
2 3lp (x1,x2)  = 5x1 x2
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u) +I k - 1
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,~u~lJlu~lu;ua~ xl (partial derivative respect to x,>


a f (tx1tx2)


a x1


a tk. fey+
I


a'xl


af(txl,tq dtxl tk .
n’lo


af (x1,x,)
0 - I : Chain Rules


atxl dX1 3X 1


n% f1(tx1, txp) . t - k
5 fl(XI.X2) : ar$$rmi


fl (txp2) P tk- 1
fl(X1, x2)


e tk-l fl !x1,x2)


246


4 = 0 (Xl,  x*1
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$l(txl, tx2)  = tkml $1(x1,  x2) :  ronfiunqwaihdk  - 1


uaz Op(txl,  tx2)  =  tkB1 $2(~1,  x2) :  ron~unwaifiud  k - 1


I


odu  n7kuuflmvni3wA93  t~uuuaun7-id~(u’rn~uniw  t+Ju  ti 3' (Linearly


Homogeneous 7 Homogeneous of Degree one) nlTa~lJn'~r,8uldI&


f$l(txl,  tx*)  = t*  01 (x1,  x,) : t”  = 1


02(tx1s  -*I = t’ $I2  (x,,  x2) : t” = 1
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91) tonCiuuuuaunm~m 7 a?ulsnd-J=r%ou’ln;u”tuz~eu  Euler’s Theorem


1; (Euler's Theorem &u;7 Oiler's Theorem)
11


Y = f (x,,  x2)


n; fitx1, 'X2) = tk f (x,,  x*) rm-dhn~rca%ud  k


Xlf1 + X2f* = k f (xl, x2) : fi = WXl, x2)


"xi


f& :


Y = f (x,,  x2)


1/ G.C. Archibald and Richard G. Lipsey, AN INTRODUCTION,TO  A


MATHJZMATICAL  TREATMENT OF ECONOMICS (2 nd ed., London :


Weidenfeld and Nieolson,  1973), p.227.
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f (txl,  tx*) = tk  f (Xl’  x2> :  ,a”~“W,d’,%‘Jd k


af (tx1.  y) atkf  (x,, x,;
P


at a t


af (ml, tq atxl af (txl,  tx,) atx*
. - + .- = ktk-’


atxl at atx2 at
f(x,,x*)


ff1 (txp*)  1’ x1 +  I f ,  (tx1,tx2)  1 K* =  ktk-’  f(xl,x$  :  XrgnSnw;


n3o


LL9l


x1  fl  (tx1,tx2)  + X2f*  (tx1,tx2) = ktk-’  f(x1,x2)


f i (tx1,  tx*) v tk-l f i(xl,‘x2)  : v1111Fpa>,Gi&l  n)


KUlh x tk-l
1


ytxl,tq  +  x2tk-‘f2(txltx2)  =  ktk-’  f ’ (x1  sx,)


I


LLB’)


n%


Xlfl(X1’X2)  + X2f2(X1,X2)


x1f1 + x2f2


= k f (x1,x2)  : tk-  1 n15mann


= k f (x1,x2) : Gfcyqtkwci
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Ib  = 9 (x 1’x2)


du 4 (txl’tx-2)  = tk 0(x1,x2) : Laniiun-)waiOiud  k ~taztt&~rlh


x1 9, + 5 $2  = k 0 (x1,x2) Euler’s Theorem


n4o x1 (ml) + x2 (Mp2) = k $ (x1,x2)


xe +x1 1 2$2 = 0 (x,,x,) k = 1
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du $(txptx2)


Euler's Theorem "lm r&J


a+
x1 ‘ax,


a4
+x2 ax, = k 0 $,x2)
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k?!+ 2?
a x , ’  x1 +  ax2’ x2 = W (x1,x2)


11 G . C .  A r c h i b a l d  a n d  R i c h a r d  G, L i p s e y ,  o p .  tit,, p.216.
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Tnod :


4 nmuFiv +lu7uuauSR  ( o u t p u t )


xi
MUIU~~  qiu7uCl3Gml-iwSi  (input) vihd  i (i = 1,2,3,..a,d


A nlJ1ufh  ’RWI)V~?O  7 dr&miu7u+hu7n  ( p o s i t i v e  r e a l  number  :  A  p 0)


a,E,y,.,,?  nu1ullu tav~~tta7uu7n  ( p o s i t i v e  f r a c t i o n  :  0 ( a,B,y,....y g 1)
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Ld&JeJrllSW3R  x 1 tta: x2 lti&JuLLlJaul¶J


9(tx1, tx2) = A(tx;


( Lk&J  )


) ctx; )


t tvii


I Atq x; . t',x;


= p+B. qx;


= ta+8 'Ax? x!j )


a+8
= t.+(x YX2)
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I
llE4-7


$ (txl,  tx2) i Aby)’ (tx2) l-a


E Atax;  t l - a  l - ax2


A ta+l-da  l - aI
x1  72


e - l-o


a l-aP
A t x1  ,x2


s l-a= t w1 x2 1


= t4(x1,x2) a l-a$(x x)-Ax1’ 2 1 x2


LLlRV  :7l) w%1waa7u  rw&nmdh%unlswPc  x
1 uar  x 2 (Marginal P roductivity  o f


xl and x
2 : MPland  Mp2 ) ?zLkmu Lh ~tln~~n7wai~uu9(gu;(Homogeneity


of Degree zero)


a - l 1-n= ClAX
1 x2


.
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0, (tx1s txgl - a A(tx1) a-1  (tx*)  1-a


z
a Ata-  xa-l l-a l-a


1 t x2


s a Atq-l+l-axu-l l-n
1 x2


= I to  ( a  A  x4-1 xi-‘)


= to  + 1 $9 x2) * : $p1’X2)


= a A xa - l  l - a
1 x2


$2 = +2(x*‘x2)


= ( l - a )  AxC;xia : = MP2


+2 (tx1.tx2)  = (1-a) A (tx j” (tx  ) -0
1 2


( l -u)  A taxa t-ax-a
1 2


= (1 -a )  A t a-aXa
1 XT


= t’ f (l-a) A xa  x -a )
1 2


: 02(x1,x2)  =  ( I - “ ) A  x; x;*


,
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=


= (1-a)  A (  c;  )’


l - a
b;  x2


aAx
a - l  l - a
1 x2


aA  x”;1  x2-(a- 1)


El a - l
aAh  >


(1-a) Ax: qea


*
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+T&J


a l-a=
* x1  x2


s $
x 1


l - a
A”; x2=


x1


= * xY xi-*.


s
x1 a - l


A(- )


x2


258
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I
LLI?


$1


tta ::
+2  .


9in6iuGiu2louou Euler ’ s Theo rem


x1 $1 +x*tJ2  =


(a + 6 ) 4 (x1,x2) :b+R)=k


a e-1
x1  ,Aq XB,)  + x263Ax1x2 1


ttnuni $1 LLP:: +2


a B a 5aAx  x2 + f?Axl  xi


5(a+B)  AxYx2


ki + 8 1  $  (x, ,x2)


~luu-llflauDu Euler’s Theorem
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Cobb-Douglas Production Function


Euler's Theorem


(a+B)  4 (x, ,x2)
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” I
rfh~noy~tqti  E u l e r ’ s  t h e o r e m


x1 0, + x20* = (a+B>  0 (x1,x2)


n% (a +8) 4 (x1,x2>  = x1 91  + 3 +z


EC 215 ^ 261


: 0
a B= AxI  x2,







Y
x2


: LLM”“1


: + =


unu&  Y tta:: Y
x1 x2


. . Y
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Y = Y + Y
x1 x2


n’ro Y = (a  + 8)  4


going to x1 and x2) 5%  :


EC 215







Y
fl P x191


(a+f3)  cb


P a A x7-x;


(a+81  -$


a+= -
(a+B)  4


264


Y


-x2
Y


a
I= -


a+B I”.*“““.““““” (1)


Y a
-3


y2
1 - T- **..-""""-"I""  (33
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x2 W2)  =


0
x2 42


4
a 6


= 8 A x1  x2


4


P fl
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XI ml) a
= -


x2 W*) 5


Y ”
21 I __
Y a+R


Y
22
Y


6
n -


a+0
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267







d( $3 )
1 >


d x1


d2 x2


d x;
>
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, . *
QlpYUE~llJlpUQ x1 (Total derivative with respect to xl)


dx 118 -l-a/E


-2 =-a
dx, ( L


8 A x1


dx
thllNld1  -2


dX1


37n a , 8


A


uar OS


x1


I


=


>


>


>


>


0 ‘16
-‘$ ( $) x1


-(l+a/f3) )


0


dx
-2


dxl


l/6
- I ; ( ia ) ,l-(l+u/6))  c 0 -J4u= ,//
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.







d2x
2 =


dx;


‘16 -( l+cx/B)-1
X1


P


= a(a + 6) ( f )I’@ -(2+u/6)


62
x1


d2x ab + 6) 3 l/l3
2 = -


B2
( ; ) p+4B)  > 0 =Jfu  //


dx;


n) dx:!  < 0
dTl


WI  z d2x
-2 > 0
dx;
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A ( $2 )
1


( 2;  )
=


A (RTS,,)


(RTS12)


--
( 2; 1


= $1
A  ( q2  1


=
$1


d ( Fp ) (52 )
x1
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4


d( ;;I


d ( E;  )


d ( -x2 )
-.2L-


a($$)


P


=


.


In


6A ~“1  x2


a-l 6a A x1 x2


0-l6  A x; x2


(inverse function rule of dirivative)


s 6
a
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1 .


0
d(2)  (El)


m 9 2


d ( 51  ) ( 52 )
px2 x1


c
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l0.b vbjumw5”  ( C o s t  o f  P r o d u c t i o n )


C = P
7 xI + px 2 x* + Px3 x3 -1. “ “ ” + PX”  X” + F
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c = C(+)+F


n) (A;qu  to& (Average Cost)


(-1 hqus?~~o&  (Average Total Cost :  ATC)


@I r;uquthX~  tadu(Average  Variable Cost : AVC)


(ml &qunundra&  (Average Fixed Cost : AFC)


ATC c= -
0
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(b) ~“q”uJ7fT”troau  :


‘C  ( + 1AVC = -


(n) kuqufwd  d” :
0


AFC =


~tm~iofh  muyumurad~~  ( A v e r a g e  T o t a l  C o s t  :  A T C )


1nunCmniavi~  :


P d{C(c$)+Fl


d+ -
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c = c (Q,)  + F


/


c := c (0)


I /


I


AC


vc


c
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mwilu  :


d (AC) =


da


.:d 4C’(4)-C(4)
UU”0


b


d {C(4)+F,
4


d $--


= 0


S&J 4 & 4 1 -C(4) = 0


n% 4 C'( 4 ) = c ( 0 )


A 4 ) E cc*1-.
6
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1nunKnn1an; :


c = C(b)
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c = P
7


xl+pxX  +PxX  +...+Pxxn+$ (k)
22 33  n


F‘ = $ 04 : $ ii-"ii1 psi


280


.
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C = C ($, k) ‘+ ‘!J  (k)


C = c ($. k) + Q(k)


n% C-C($,k)- a(k) = 0 implicite  f o r m


Ck  CC,  0 , k) = 0
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n% implicitn  form
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C’  =
p


x1
x1 + Px  x2


2


EC 215 2 8 3







0 ac ac
di -


x, . dxl + ax
2


I dx2


p * dxl +p
*i x2  .


dx2  *


P odxl z
*I


dx2.-


dx 1


=


0


0


-P dx2
X2’


- E l
P


x2
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(Profit Maximization)


(Constrained Output Maximization)
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7mrJ r7mma  :


X
2


E 3& y$& -------  ---- @
2E 4 2


IX
1
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-hod  :


w91xln91fl’1\1  :
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l  ) uuuuun77  :


Maximize  (Lh.ll�l&lmdl~Vqn)


Subject to (nlul~tdoula)


co = P
9


x1 + Px  x + I'
2 2


b) W917N7H,r;l~"qRSlDVCr?L\~7  :


lnuWn77uo~ Lagrane Multiplier Method urlFY Lagrangean


Function (Augment Function : J) Tmm7777uuuuuun7-s thu~io  r&Kuuwirun-13


rdou'lwT%!u"  Lagrange Multiplier (6) tihJa-2  t&u KG


J = $ (x 1,~2)  + 6 (Co  - Px  X - Px  X - F)
I l 2=


First - Order Condition (Necessary Condition) :


aJ a + (x1,x2) aho -P X-p X-F
-=.I  I T x, 1 X"  2L - L -
a x1


1
a x1 a *1


2 8 8 EC 215







MiU
f


‘BP  - 0
xl


----__  (1)


aJ
- I


ax2


ae(  co- P XI  - Px X - F)
x 1 - - 2 2


a x2


#ha 42- BPx - 0 - - (2)
2


aJmJ  m
a? B


ag(X1’Xz)_  +
a B (co - P  x1 - P X2  - F)


aB
“ 1 x2----


a 8


0m c -P x
x1 1


-P X -F
x2 2


co-P X -P X -F - 0
x1 l .x2  2


- - - - (3)


-an ( 1 )
+


-BP = 0
xl
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P
xl


nlmaQm 21
P


x1


9-m  (2) y px
2


BP
x2


um  ~&&h&iiu
42


I ” !l
*In(l)  uaz(2j  p


$2


%I
G
x2


(1)’
u512nn -, : I!1


(2) $2


%P
x1


%


0


--- (1)’


BP M m -
x2


(2)’


% --- w”


%


n%


uaz


+i -
F


%
xi


PI. 1 I
P


xl
4 P


2 x2


(1)”


n- “i - BP
xi


- (A)


------ (B)


(t = 1.2)


(i’ 1,2)
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Jll J12


I? - J21 J22


JBI JB~


J1/6


J2/B


J6B


411 912 -F
7


/


Ii\ - 421 4'22 - px2


- P - P 0
9 x2


.


aJ.
J.. - -,


1 .I
ax,


1
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“1 - 1
I


i - l


= Ii, I -


$11


$21


-P
x1


912


$22


-P
x 2


-P
x1


-P
x?


9
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mm7 determinant = 017.  +  P p $21
9 x2


I -(@*1P2 - 2g]*P 1’
x2 x1 x2


+ $22P2,  )
x1


: 012  = $21 4nu Young’s Theorhm


’ $1  - pxlTnoni7unufl7 VIIU (lw7l~qaunln:  - - .-x1$1
P


T2 F
)


*2
$2 p.


x2


EC 215 2 9 3







uamu  :


9-m  ~~uuaun~m~wPfl  (Production, function)


9 - + (x 1 ,X2)


oyilua;7u
( t o t a l  d i f f e r e n t i a l )


d’4 I
v*1


t $ dx
2 2
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h\ri%l


(Bpx,) dxl + (BPx ) dx2
2


B (P dxl +  P x dx
9 2 2


)


P
3


x1 + Px x +
22


P
5


dxl +  P x  d x
2 2


nlu 4.t
dc


II


ud dc
a


I


IF& t.+ .
dc


EC 215


6


F


:  m a r g i n a l  c o s t


1I
i-k


295








Subject to


81 = L + SK


~nti73n~mou  Lagrange Multiplier method 3-1;  Lagrangean


Function dd 6 r& Lagrange Multiplier piu&


J - 8LG+20K*i+  H(RI  . L - SK)


296 EC215







First - Order Condition (Necessary Condition)


JL
- 4L-+ -L3=  0 - - - -  ( I )


JK =
41OK -56  = 0 - (2)


JB  = 81-L -.5K = 0 _I-- ( 3)


-m(1),(2)  uaz(3)  ?~lvY&1”q” (critical nmber)  t&


L = ‘16


K - 9


6 - */3


nf MnaQlJ  ldn~uiluXlf”qR  :


Second - Order Condition (Sufficient Condition)


lR?Jfl11W911Nl Bordered Hessian Determinant


JLL JLK J
LB


IV  - JKL  Ju JKG


J@L Jf3K J66
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P%%J~z~"  Bordered Hessian Determinant * d"ciunuvl  RDunY)aflU


I-l - 5 0


&hnq~  L = 36 ttaz  K - 9


m 0.417


LLamu?l


m-1
{
i- 1


3% A’


2 9 8 EC215







L I 36


K = 9


8 - 2/3


m 8(36:12 + ~O(Y)'/~


I 108
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X
2E
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c = P X  + P
x1 I x2


X2+F


uQnuadnn”7nun


c = P x1 + Px x + F
7 22


Subject to. (nlol~tdQulu)
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G - P
xl


X1 + Px X + F + A I $ - $(x1,  ~2)  )
22


First-Order Condition (Necessary Condition)


aG  I


a<,
G1 -


a@  xl+PxX2+F)
-x1-.--.-.2- + i?hi$  dCxl,  x2l-l


- - - _ _ .


axl ax 1


LfJcl G1
- 0


.
-.  P = 0


9
- A$1


ac w
ax,


G2 =


o--P(1)


a@  x 1  + px  x2  + P) + ah{+’ - Q(x,,x~)~
< l - - - - 2 - - - _-__-


ax2 ax2


3 0 2 EC215







G2


P
x2


- x4,


I
Ga


P 0 : &R-nllffu  tihrgui


P 0 _--_-_-_--  -----  (b)


a(P
5


x1 +  Px2X2  +  F)
+ ax  I4O-  4 (x1,x2)  3
-
3%


2


o” - 4 (x1, x2)


0 : dlR?lu~  I Ihrgu;


0 -..--  c ___-_-^--- (-)


q1n  (*) P
9


- x 4, = 0


= x4 ________-----..-  (*)”
1


II


= x
_-----------..--(b)


5 0


= x 4, --------  ------  (h)’


x=


II


----_  _-----_.- (p!
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P P
x1  = ex2 = x


4 $2


P 91
-Xl =i
P 2
x2


“.


nio


__-----  --- (<)


------...-- (I))


P =
x +i


(i = 1, 2)
3


P
-xi  E


"i
x


P
-Xl  = 21 =
P


+2
RTS12


x2


n) nmmu  L d aGuc3J


(Second - Order Condition (Sufficient Condition) :
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PI 5


- . .
G1l G12 GIX


G21 G22 G2X


GA1 GA2
c


t A


&&I Bordered Hessian Determinant ulunrr3r%ciu;l  n14nqn7rui


UI~~UP;I~~;~~FIUDU thrw do il~fdsunuio  (- llrn  = (- 1)'  = - 1 &J~chm!  (-)


l&&J
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du  Bordered Eessian  Determinant *mU’“uaqFl  LljlJ7  dne~¶“ddX~u


- I’i,l  - - x011 - A+12 - 01


- x021 - A022 - 92


- $1 - 9 2
(I


: 912 - +21  1w.1  Young’s Theorem
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c - Px X, + Px X + F
1 22


oqiiG71u (*total d i f f e r e n t i a l )


.rru&J


P
3


dc


x4
i


( X .$1  ) dxl + ( hj2)  dx2 : ~rnufh


X ( OldXl + d2dx2)


o1  dxl + +2  dx2


:  I-C  =  M a r g i n a l  C o s t


3 0 8 EC 215







Inu :


Minimize


c = L + 5K


Subject to


108 = SL' + 2OK'


Inu?lnvao*  Lagrange Multiplier, Method "qrrln Legrengean


Function dua X 1%~ Lagrange Mtiltiplier Ml :
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G = L+5K+ x (108-  8L4-  202)


First - Order Condition (Necessary Condition)


GK  = 5 - 10h  K-4 = 0 ------------- (2)


GA  = 108 - 8L4  - *OK?  = 0 ------------- (3)


L = 36


K = 9


Second - Order Condition (Sufficient Condition)


Bordered Hessian Determinant


=


G1l 'lk
G IA


Ckl Gkk
Gkh
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tdofhnqn


. .


UUn\s-Jl


- 2Ai-31 0 -4L’14
I


I%+11  = 0 5x-‘4 -WA”2 i : : 1


F,l


L = 36,


I -4L-lJ -IoK-’ 0 1


r -80XL-1K-3J  -200AL-3<  K-l


K-9 ,tar.  X  =+


I$I = -8O(+ (36)-l (9,-31 - 200(+(36,-3d (9)-l


= -0 .1235  - 0.15.43


s -0.278 < 0
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C = L + 5K


wun’~  L LL~Z K  : = 36 + 5(9)


= 81


3 1 2 EC 215







uuuuuni7nil~ (Profit Punctlorb)


n m R - C


n - P.$(x1,X2)  - PxlX1  - Px2X2 - F


Pi:at  - Order Condition (Necessary Condition) :
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a x a wbl,  x,)) _ a(Pxlxl) _ wx2xt) _ a?
y*1- -v- -


axl axl Ox1
Gl


I
p+l


- PXi : aipyan4


&n)7111uu  touqwi


-----da----  ( 1)


a n


ax,
I x2=  - -


a~Wxl.x2~~  _ a(pxlfl) _ a)(px2*t)  _ ff


ax2 ax2 ax2  - - aa2


m PO2 - Px2 : UryqiIn-dci


de ‘II2 = 0 : !il~~lUdL 1t!hlfJu;


h%J PO, - Px2  - 0


3 1 4







w2 = PX2 -__--_---  __^_.. (2)


41 PX


G =
-I


px2


n . PO, = pxt
(i = 1,  2)


u.
91 P X


T,  =


- 1


px2


-1 n*Qou  tdoiltiun’i7nqn


second - O r d e r  Conditio-ti  (Suificfent C o n d i t i o n )  :


IHI  =


Rll n12


Iii]  = arr
- .I
ax.


1


1121 n22
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p911 w12


P$Zl PO22


du  Hessian Determinant ,,vhzp  ,auol&iuE


m=o
(


i=l


If111  I


IH,I = P  9,, < 0


316







= It:*1


mm&  determinant: = P2  (91  I+22


m
(


i


P@ 12


PQ22


(91212}


= 0


= 2
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,,a z


Tnud :


n.


91.


$11 =


$22  =


411 <


$22  <


ua::


0


0


ah = acl)


ax 1 axl


a02  =- a (m2)


ax2 a?


“. PXi = WI = VMI’
i


(i = l,?)


3 1 8 EC 215







LLar u. = RTS 1 2


fBni :


Q) uuumnw


Maximize ll = R-C


e (IV’)  - (PTL  + PLO
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LdEl  : P = 1,s


Pi = 1


Pk = 5


.
tta7 n = 1.5(8L'  + 20K %) - CL + 5K)


= 12L4  + 3OK% - L -. 5K


IO) ti-3l5Nln’l~“~~~S~~ltt~~


First - Order Condition (Necessary Condition)


IT1 = 6L --Q-l = 0 -- __.______-  -- (1)


n -k 15K -4-5 = 3 --_---------. (2)


vtn  ( 9 )  LLPE (b) sz-l&hnqm  (critical number) dt u


L = 36


K s 9


n) vImm3u  t&u”ufYuXl7”q.


Second - Order Condition (Sufficient Condition):


Tnuni5Fh1mi Hessian Determinant
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-34=
I
-3L 0


= - 0.0139 < 0


1q  = n11 ” 1 2


n21 n22
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, -3L-3*  0
P


0 - 15 K-31


2


-31
-y/2


c (-  3L ) . ( - 15  K )
2


s -31 -3145L . K
2


= -344_5 (36) -31
(9)


2


s 0.0039 > 0


n =a 1.5(8L'I +  2OK’I)  - (L  +  5K)


m 1.5 1 8(36+ + 20(9,% 1 - t.l+5(9) 1


3 2 2
EC 215







,


= 108 Mu’?“hlnll
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(Maxima - Minima)


G = G (x 1, x2, . . . . . Xn,Al  ,A2  1 .I., Am)


lSt- Order Condition rdom&7nqn  { c r i t i c a l  n u m b e r )


dG = 0 : oy?ha-r-w


nd2- Order Condition ~hhldifnqa  :


d;oWfli?ou  Hessian Determinant knun n - m ynnl?cJrru  ltlr


d2G< 0 negative definite


n%Tnon?dq1w?  Bordered Hessian Determinant (IHI)


*) nd%-nm-khp  (Minimization)


d2G>0 : positive definite
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w?nlnuni?k?ixu:,  Bordered Hessian Determinant (IHi)


“1 n = 5


m = 2


.
iju&lounnaau  2 "d Order Condirion


&ITu  n - m = 5-2  = 3 Y" (i = I, 2, 3)


327







I%+1  1


2+  1
v---------i ,


G
1 1


G
1 2 G13  I G- G 1x2


I


G21 G22
I


G23  I G?,,
G


?A2
I


G
I
I


3 1
G


3 2 G33  ’ G3XI


i


5A.,


----------------4--d


&SJWlFI { (2+1)+2)-  rowitaz{  (2+1)+21 - col.
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TnfJlvJln%l  :


d


0


c


/


K


//’
/


MC


P = AR = EiR


qaonw :
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InfJnIPRfilafl; :


uuuaunimil7,


II = R - C


II = P.q - C(q)


an-
0


do n.q =


C&J


II d (P-q)= - dC(q)
4 dq dq


P - C’(q) = 0
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n% P * c' (9)


P = MC


n - 1 aiu7uK7uLh


Hessian Determinant hwn  n - m - 1 - 0dh hmnwfiu


=I qn


cm h+l


lHil


1 - lq = lJ$q 1


I II
w


d f? - c’(q))  :


Lz - dq
p + P(q)
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lH,I + ( - l>’


n% I”11 < 0


n% - c”(4) < 0 : ttnu& P,I


- l fpmon c�(S) > 0


c”(S) - dc’ (4)
G


P - M C


3 4 0 EC 215







c - q3 - 12q
2 + 419  + 8


l  ) uuumn~7 thurw


Pfaximize YC E R, - C


w 2oq  - (s3 - 12q2  + 419  + 8)


P 2oq - q3 + 12q2 - 41q - 8


n%


@i&l


dIfdy = 11 9 -8 20 - 392  + 24q - 4 1 = 0


- 3q2 + 24q - 21 = 0


. c-3 -I-  3)Cq - 7)


4


= 0


= 1.7
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ml nnmu t&~ilullur;l?nqa


Second - O r d e r  C o n d i t i o n  :  ~muni~Rwmn Hessian Deterltinant


&unnmu  Hessian Determinant nernsl-O L t tin


- 6(l) + 24


18 ’ 0


- 6(7) + 24
/


-18c  0


n = -q3 + 12q2 - 21q - 8 t


) unuX7 9 = 7 : n = -(7)‘3  + 12(7)2 - 21(?)  - 6


P 90 rru’w L3UR11
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0
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1
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-


0


/


/


\


0F1


18,-a)


1,201


\I/4.7)


7


,901


\


MC


I.


\


q


I I


(7,201
P=AR=MR


--q *
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uuuaun77nil7  .


Jl  I R - C
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k3ximize II  P (PI41 + P.fl2 + * * * + P”qJ  -%1,,9*.  .’ a 9”)


F i r s t  - O r d e r  Con&ion :


a n
- _
aql


a n
Gz =


n2  zc Pa-C2 =


an- -
aq3


n3 = Pj - CT =


an =
Gn “n =


ua::
(i)
G.


P -c =
” ”


pi 1-c. =


P. . =
1:


Pi =


P


0 - - - -  ( 1 )


0 - - - -  ( 2 )


0 ----... ( 3 )


0 -*_---. (n)


0


C i
----- ( * )


C-i .-----  (**)


‘i
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lnud 5 -
3C (I = 1, 2,...,  n )


a pi


Inud  ifessian Determinant qnd  i ‘In 7 ka


do m-0


(- l)m+i


(- l)D+i


( -  l)i


n11 1112  . . .


7121 1722 . . .


. .
* .


“ i l ni2 . . .
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SW%  Hessian Determinant qndnduNo


IH,l  - nil


n%
w


- Cl1


Xessian  Determinant qndaod~


I n11


b21  -
n21


-C
11


P


-c21


-C
1 2


-c22


lH21  + (- 112
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h%I I -C11 -52


I%( =
5 - c


22


LLvi


I
Cl lC22* - C12c21


I
CllC22 - (cl2)2 : Young’s Theorem Cl2 = C21


CllC22 - (cl2)2  > 0 &mnnnilqui  (tihrum)


(Cl21 2 ’ 0 rauoll;i, 52 9zlJl”nilH~a~a”“il~lJfJ


L&&1& cllc22  ’ O


ttX9ln”l1k1Nl b$i *VW?1 c11  > O


#i& *
c22 ’ O RIY
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‘Ihi  :


77nT-w;  :


PI  =


P2 =


30


15
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c =
2 2


a1 + 4192 + 2q2


Maximize 11 = R - C


I 304,  + 15q2 - (2qf  + q1(12  + 2q$


P 3oq1  + 15q2 - 2q;  -
2


q1qg - a2


an  zc n,


aql
- 30 - 4q1 - q2 = 0 --------- (1)


= 15 - q1 - 4q2 = 0 ------___ (2)


ml nmaour&fUiu'uRi%rp


Second - Order Condition : Inun~~fi~~~rnl Ressian Determinant hi


Hessian Determi‘nant  dx&~wnanu “-m=2-0  - 2 slfl
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lta:: P,I


IHo  + 11 =


b’  1 =0 + 2


Hll


- 4


“11


n21


- 4


- 1


1 5


< 0.


1’3  2


” 22


- 1


- 4


> 0


IH,l


IH,I
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wPmA&wfhdaou  b nGdJu&  uars~l&il7n”uih  Obo nu’w t&~mi


(R = 240 ttar  C = 120)


GC)U


n. qaunlwuouo\l~ni~wSI~~uaaln~nn~~tt~u~u~nu~~au~~~


(Decision of the  Firm in Honopolistlc  Competion Market)


Pi = Phi) : Uu~iwiind  i In 7


n~xt&uSuTnu’l;au~~~  (One Product Firm in Monopolistic  Competitiun)
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uuuuuni7nil7


I(. - R - C


lnfd :


n P pq - C(q)


n = R(q) - C(q)


Maximize II = R(q) - C(q)


dll  =n I


dq


dR(q)  - do


dq


w.d  _ IJ


4


= R’(q)  - C’(s) * 0
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n%l R’(q) = C’  (PI


Tnud : R'(q)  * dR0 I ).fR
dq


: Marginal Revenue


MR - MC


EC215


P d W’(q) - C’(q))
dq


----


= R".(q)  - C"(q) : .+yGlnvn;
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uar


R”(q) - C”(q) < 0


R”(q) < C”(q)


dR’ (9)R”(q)  = dq


C”(q) =
P


R’(q) = C’  (9)
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R”(q) < C”(q)


‘ 3
c = 9 - 13q*  + 61q + 8


-1 uuuamv  ~&3nu7u


Maximize - R-C


i Pq - c


m (40  - s>s  - (2 - 13q2 + 61q  + 8)


I -q3 + 12q* - 21q - 8
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a!  =T( =
dq


-3q2 + 24q - 21 -
9


0


nfo (-3q + 3)(q - 7) ii 0


Second - Order Condition : Tnon~Sqlxu1


Hessian Determinant n - m = 0 =


b$l  =


l -


n
99


- 6q + 24


~?15Nl&  n
qq  :


l&l


- 6(l) + 24


t 18 1 0


”9 =7 LL9-2 11 =
qq


- 6(71 + 24


= -18 < 0
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II = -93 + 12q2 - 219 - 8


LLMURI q=7;  II = -(7)3 + 12(7)2  - 21(7)  - 8
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TRLIL m1mc!m :


C
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ll = R-C


&Jtp


+fUlfU


R = RI +.R2 + ..w + R n


= P1ql + P29* + .". + 'nqn


c = C(q1,q2, . . ..q.)


'


n P (plql  + P292 + l e' + P,Q- C(q,.q*..*.,q,)


EC215 361







9) uuuaun75  tfkminilstpqm


Maximize n = R1(ql)  +  R2(q2)  +  .I.+ K”((l”)  - Ccl,,q,,...,q,)


?! _
aq1 "1 - Ri(ql)  - Cl = 0 ---- --.-  (1)


.


an  =
n2 =


R; (q2) - C, = 0 - ----_ _. (2)


a%


an =
aqn


n =
n R’,.$,)  - C,,  = 0 - - - - - -  _ (n)


R;(qi)  = Ci ------ ("1


R;(q)
“; (qj)


= c. __..._..-1 (**)
c.:
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Inud R; $1 =


Tnud Hessian Determinant ynd


*


3


+


"11


1121.
.
.
"il


i ‘In =j  A;,


( - lyi


(- pi


(- lP


n12 . " * “Ii


T[22 " . . “2i.
. .
.
n 12 . *' ii ,


.
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#U&J Hessian Determinant yndn&  Aa


1q =


nTo +ql) < c11


Hessian Determinant* ?p&+ou 60


lH*l =


- c12


0,
R2(q2) - C22


II
= RIGI,)  - (:,1


- c21


= { R&l,)
II


- cl11  {R2(q2)  - c22 ] -- c12c2*


= I R;(q+ - Cll) (R&2) - C22 )- (Cl,) 2


Tnu Young's Theorem : C
12 = C2l
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ttu la,l  > 0


CrUfiU


@;I  (ql) - Cl11  +q2)  - $1 - (C,,j2  1 0


11
IR1 Cs,) - Cl11  1 R;(q2) - C22) 0


R;(r12) - C22 ( .“,” //


R; $,) - Cii  < 0 ( i =  1, 2, . . , n:l  #Y


n3a
R ;  hi) < ‘ii


d R; (qi)
=


dqi
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uaz  c'ii


hi)R;
R; (Sj) =


RI;  (q,) <
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C
2 2= 91 + 9192 + q2


p1 = 55 - 91  - 92


p2 = JO  - q1 - 2q2


uar c = 2
41  +  9l9.J  +  9;
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-1 wuuun~7  tth2.m


Maximize n = R-C


- (Ply  + PfQ  - c


- {(55 - q1 - q*) q, + (70 - (I1 - 2q*)q$-


(4;  + '11(1*  + 4; 1


P 5541 + 7oq* - 3q1q* - 2q; -. 39;


an iE
Gi


nl  = 55-3q*-4q1  =  0 -------. - (1)


a n
a;i, = n2 - To-3q  -6q2  = 0


.1
-------._-  (2)
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Second - Order Condition : ~nun?~Rq7xu?  Hessian Determinant


dqfl Hessian  Determinant &&~IR~EIU


=


Itr,,J  =


I
% + 2


I =


IIll


-4 < 0


fill fll2


%l n22


- 4 - 3


- 3 - 6


n - m  = 2-o = 2 '4;"


' I'


' 2'


15 > 0


4J WZL$J;'L Hessian Determinant
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* 55(8)  + 70(F) - 3(8) (2)  - 2(8)2 - 3a2
.3 7


d. '17Wt&InL!jj~  (Price  Discrimination)
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5-~uiuuoun~stlon~~nul7R7 (Degree of Price Discrimination)
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0
I 41. 92 43 44
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P


C


P(q)
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4? = II =
dq 9


P(q) - C'(q) = 0


P(q)


n
99


P'(q) - C"(q)
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P’  (4) - C”(q) < 0


P’  (4) < C”(q)


P(q) MC : C'(q)  : MC
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nuinnsiu;i  :


Maximize II = R-C


P P.q - c


= (100 - 4q)q  - (50 + 2Oq)


m - 4q2 + SOq - 50


44 - n P
dq 4


- 8q + SO = 0


:. q = 10


Second - Order Condition : hl7Nl Hessian Determinant


b~&fiI Hessian Determinant ~&~nnaou n - m = 1 - 0 111  1


376 EC215







P =- 100 - 4q


s 100 - 4UO)


P 6 0 nuw Lhl,l


ru-tb:IhI~dqudtp  LI;-~Tu


n = -4q2 + 8Oq - 50


= -4(10)’  + 80(1(l) - 5 0


82 3 5 0 nu1u  ,tunr1


* J; P(q)  . dq  - C(q)


s+ J,” ( 1 0 0  - 4q) dq - (50 t 2011)


zz 1ooq - 2q2 - 50 - %Oq


n
9


= 100 - 4q - 20 = 0
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ml nn~au~AoUuflu&?nrp


Second - Order Condition : Fiw7~1 Hessian Determinant du~od~17m  .


nniwwhwn n - m = 1-o = 1 ?plAu


n = - 4  co
qq


=


100 - 49


100 - 4C20)


20


6" (loo,-  4q). dq - (50 + 2~)


i2' 1OOdq  - 4q.dq - 50 - 20q


100(q) - 2q2 1,'" - 50 - 2oq


lOO(20) - 2(20)* - 50 - 20(20)


750 n;xJ  tauvl71
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7nu  17UlpI~  :


1


D


p1


p2


p3
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6.n 5lRl  ~'la"lJpiWs~Ciuda711u~al~


( T h i r d - D e g r e e  P r i c e  D i s c r i m i n a t i o n )
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lnu L7UlRltR :


0
41 92


382
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MR =


Q -


MC =


ml + m2


.


mamd  b :
0


MC = m2


~fiu~l-~rto~  N ~VI  E2 lJ%J-lNn?~uPA  q 2 5lFl7  P 2


R = Rl(q1)  +  R2(q2)  + Rj(qj) ’ - - - -  ’ Rl,(q,-,)


EC 215 383







w R1(ql)  +  R2(q2)  +  R3(q3)  +  - - -  ‘- R”(q,)  - C(Q)


an atR,(sl)l a{c(Q)  )
-  0 n1 E


aql aq1 aq1


384


a{Rl(ql)  1 afC(Q) J aQ
Li - - .- :  ( c h a i n  RuIe)


aq1 aQ aql
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#q$k& RI = Ri(ql) - C’(Q) = 0 _------ i 1  ‘I


12  = R;$) - C’(Q) = 0 - - - - - - - 11,


-- --.


“n =


HJU Ri(ql)  L


R;$) - C'(Q) =


- - - - - - - - - - - - - - -  -I


R,!,(q,) - C’(Q) =


2; $1
c


R;$) = R&J


-


0 - - - - - -  1’3,


-2-- _ _ -  -


0 ------  (n)


C’  (Q)


= .a,= R;(y,) :..  C’(Q)
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*ll n12  . . . “lil


*21 *gv.  *  . n2i
.


.


*i1 ‘$2  . . . 4*ii


R;(qQ-  C” - c” * . *  - c”


- c” R;,(q2)-  c” . . . _ c” lnod :


. .
. .
. . c” = c”(0)


- c” -Cl’ . . . R;(qi)  - c”


UrJlUR-rlaJ  :
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ipmmn  Hessian Determinant qndnih


qin IH,I < 0


n3n It11 < 0


Leo R;(ql) - c" <o


nulfu Ri'(ql) < C"


Hessian Determinant ?pdmu


n% IHJ  ’ 0


nil =12


> 0


n21 n22


n% R;(ql) _ c" - c"


> 0


- c" R';(q$ - C"


{ R;l$) _ =” ) ( R;(qg)  - c” ) - (C’+  ‘) 0
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Ot';$) - C") $(q2) - C" } > (C") 2


LLB~ +I~) - C") (R';(q2) - C") > 0 (L&am)  GYXI


u&in  Ia,]  WJ+ R;'(q+ - C" < 0


?iua fR;(ql)  - C") 1 R;(q2) - C" ) ' 0 il-; LSullJlX&l do


fR’;$) - C”) us= fR;(q2)  - C") 3r"4eunulu  ~nu"auf%.4  du'ludd


iR;(q$ - C”) < 0


,?iudUa’l R';(q2) - C" < 0


R’; $1 < 1 C”
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+I,) = R;(q2) = R;$) = __ _ = RA(q,) = C’(Q)
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$5 dPiP ‘i dqi + 91 zqi


1
P pi 11 + zdi}


7% I Pi 11 - ,+d,, 1 : (Edi< 0 )


lnud  Edi &I n??uonnJuuounz~uauo~uaVRa7nA  1


(point elasticity of demand in tbe iEh - market)


%
I Pi {l- id,,
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6-1  lEdjl  > IEdlI.  :


Y


Pj(  l- id 1
f


11- id?
-j > 1
{l- 1


Td,


1


EC 215 391







C = 100 f 200 t--hAdo  = q,+qz)
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Wni:


7wv.hnum  :


?l = 80 - 5q1


p2 -
180 - 2oq2


n = R-C


x Rl(q1) + R2(q2) - C(Q)


=
P1q1 + p2q2 - C(Q)


Maximize n = (80-5q1)c+ + w30-20q2)q2 - (100+2OQ)


= 80q1-5q; + 1m2 - 2oq; - 100 - 20 (q1+q*)


= 6041 + 16Oq2 - 51; - 204 - 100


EC215 3 9 3








*11
1111  =


II21


- i0


E


0


n12


n22


0


- 4 0
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= - 10 0


0 - 4 0


400 > 0


ma1Fld  . :


u!x flamd b : 42  = 4 ddhJfY1


ma1md  . : p1  = 80  - 511


zl 8 0 - 5(b)


= 5 0 n&0 bW+57


UQ’. namd  ‘~3 p2 = 180  - 2042


= 1 8 0  - 20(4)


= 100 ’MU-S  Lhill
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rl = plql + p2q2 - C (9)


= 50(6)  + lOO(4)  - {loo  -6 20 (6 + 4) I


= 3 0 0 + 400 - 1 0 0 - 2 0 0


= 400 nuw 1~unm


91 = 6


42 = 4


p1 = 5 0


P2 = 1 0 0


R = 7 0 0


c = 3 0 0


n = 4 0 0


i1in PI  = 8 0  - 5q1


n5a 80 1
q1  = F-3 P1


EC 215







Ed1  = :1 . 91


q1  dP1


= F (-+I


5= --
3


P2 = 180 - 20q2


1 8 0
92 I - -  2 0 20 -Lq 2


------- - ------ ( 1)


E d
2


= _p2 dq2


42
’ dp2


= 1004 ( - 2; 1


5= - - - - - - - - - - - - - - - - -4 (2)
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p1
P2  =


=


=


P2  {l + E+ I
2


11+ ‘1
(- ;)


11+ 11
(- 4,


1
z
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80  - 5q1


a0- -5 ‘P
5 1


180  - 2042


ia0
20- +o p2
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Q = 41 + 42


80ii 'y- -
180


+ppc-?(r-


I 25-+P


zs 100 - 4Q


= R - C


s P.Q - C(Q)


P (100 - 44) Q - (100 + 2OQ)


P 80Q - 4Q2 - 1 0 0
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“QQ  =
-8 < 0


P = 100 - 4(Q)


= 1 0 0  - 4(10)


= 60 nl;-2u~4umci7


II = PQ  - C(O)


Es 60(10)  - [lo0  + 20(10)]


rz 600 - 300


= 3 0 0 MU-II,  tQum51


“a”


Q = 10 R = 6 0 0
I I 11 = so


P = 60 c = 300
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700=
-iii
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cii ’ 0
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“; hi) =cj
R; $1 cj
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Pl = 8 0  - 8q1
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c = 2 0  +  15Q


T”lld 0 = p, + 92  + q,
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*) uuusiaogt% (Open Model)
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b) ttuu+iaoutlpl  (Closed Model)


9) uuuqianuaniwdv  (Static Model)
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n) uuu?iaauan?wLndau  (Dynamic Model)
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6.b  Tnm&i~n7vSmmi91: (Mathematical Formulation)
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Interindustry-Intermediate


Use


(Domestic+Import)  P1 p2 P3... Pn


i


GNP


-.


Total


Inputs (Xj 1 x1 x2 x3.. - xn
i


420 EC215







Total Output


Xf


x2


x3


*n


Primary Inputs


Total Inputs


nlllULnq  :


Intermediate Goods + Final Demand


Xl1 + Xl2 + Xl3 + * - - + Xl” +


x21 + x*2 + x23 + *. . + X2” +


xgl + x32 + x33 + . . - + X3” +


Xnl t Xn2 + Nn3 + - - . t Xnn t


Pl P* P3... Pn


x1 x* x3 - - ’ x
n


n +P =
ifl⌧ij  j


l  ⌧


j


d I


d2


d3


d
n
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x* =
x21 + ‘22 + ‘23 + . . . . + X2” +d 2


.x3 = x3l
+ x32 + x33 + . . . . + X3n + d 3


. . .
. . .
. . .


xn = xnl + xn2 + xn3 + ---- + Xnn  + dn


iiuuRs xij =
xi


atl (a ij = Ccnstanted)


TRcJd  :


x =j ix
i = l ij + ‘j


‘i = 1 Y..
j=l ‘ 11 t d.1


n4a xej = a..X.
-LJ  1
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LLIlUPll  x =
ij aijXj


x1  = allXl + a 12x2 + a13x3 + . . . + al”x” + d 1


x2 = a21X1 + a22x2 + a23x3 + . . . .f a2”>rn  + d2


x3 = a31x1 + a32x2 -t a33x3 + . . . + ynxn + d3


. . . . .


. . .


. . . . .


xn = anl  1x + an2x2 + a x + . . . + a
n3 3 OnXn + d n


(1 - all)xl  - a12x2  - al3x3  . . . - illnxn = dl


- a21~1 + (l-a22)x2  - a23x3 . . . - aznxn = de


- a3lxl  + a32x2 + (l-a33)x3  . . . - a3”xn  = d3
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1-all)xl  - a12x2  - al3x3 .


-azl  x1 +(1-a22)x2-  az3x3  .


-a31  x1 + a32X2 +(1-a23)x3  .


.


-anlxl  - aI12x2  -


.


a n 3 x3 *


(l-all) -a12 -a13  -


-a21 (1 -a22) -a23 ’


-a31 -a32 (1-a33) .


. . .


. .


- aIll -an2 -an3 - .


- al*Xn


- a2nxn


- a3nxn


. +(l-ann)xn


TalII


. -a2n


-37


. (l-arm)


n x n


x1


x2


x3


x ”


dl


d2


d3


d n


d2


d3
.


d n


nxn
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0 . . . 0


0 . . . 0


1 . . . 0


.


. .
.


0 . . . 1


alL al2


a2L a22


a3L a32
.


.


.


anl a*2


a13 '.. al"


a23 .". a2n


a33 --* a3Il
.
.


uanu~nuSkgyKnu&ou  Matrix (Matrix Notation)


[ I - A ] ,  = d


Tnud  :


[I - A]t?h Matrix p1u?n nxn ua~\iinufi~ih&t&iu


du I : identity matrix


A : coefficient matrix


nmmm  Column Vector X Inu5~uu matrix (matrix operation)


w
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(I - *-: 11 - A) X ={I-A;' d*


nT0
- 1


I X L (1 - A? d ;(l - At (I .. Al.: I


X = (I - A? d : IX = X


vmd?~ti%n~r~~a~wnfl  X RIUJ'IXIU  Matrix "
0 .


lnclnuuiu  na73Wo  n1n7
ni


Matrix "A"du~%~n;i Leontief coefficient matrix


(%j)  1 ”(A = (ad nxn = xj traxA”Lfinaonwn identlt)
nxn


odu (I - A)-' iTuui~tfun7i  Leontief inverse matrix iam


C’I n% B,z = 1


B : Au matrix B =-ln  7 da7lu1n nxn


IBI : %I determinant WN matrix B


C : %I Adjoint PIUV  B n% “adj  B”  (C’ : transpose tinv


Cofactor 3J
I : fta  Identity matrix TJUI(~~ nxn
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uaz3inr&u1wnu  inverse matrix d+


-id adj B = C'


cij  =
(1 - l)i+j  1 Mij 1


(Mi i : Minor i - j’l


vmn5~n73m inverse matrix ol~u~"n\rm~~~~~iv~~~~t~u~~~~  metrix B


TPI  1 lrn7 inverse matrix (B)-1 l&&~de  matrix B 6uuli)u nonslgular


matrix namfio  H determinant -i;nhfu  "qu;"  ( IB 1 # 0) Ln'-&l "UQ r&J


=J~'llkw77o
I


inverse lnralr


(I - A)-l = adj (I - A)
II - Al


X = (I - A)-'d
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Xij  = aij xj (klJyad  cl)


TRU  xj 1 ibwnn7miu-mmu7-uu  Matrix  &N&I  (  Xi = XJ d.la  i=j  )
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X .= (I - A)-'d


war xij = aij 'j


l ) mi dn?'lnl Matrix A (Leontief coefficient matrix)


A = (a ij )3x3


.I25! .250 .167 .020


A = .333 .080


.175 .133 .2oa
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m) ~W~N-IMI  Adjolnt (I - A)


91n Cof (I - A) =
%)3x,


du cij = ( - 1) '+j 1 Miil


P& .523 .214 .150


Cof (I - A) = .136 .697  .147


027 .075 .542
J


9-m adj (I - A) = (Cof (I - A))'


PTuik  adj (I - A)


.150 .I47
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<) ~1; (I - A) -1


-IP\) ( I  - A)-’ = adj (I - A)


( I  - A) - ’


I. .214  .523  150 .697 .147 .136 .075 .542 .027 i
=


.523 .136 .027


.214 .697 .075


I
L *150 *147 .542


=


0.42
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.523
-73


t&  ( I  - A)-1 =


1.245


.510


.357


6) nitQm7vhm  column vector X


=tin x = ( I  - A)-‘d


459.51


=


-- !


1,681.92


605.73


.* .w
.42 .4 2 1


.?E .:175


.42 7z I


.w. *542
.42 .42


.324 .068


1.660 .179 1I
.348 1.291


1


1.660 .I79


110


960


180


3x1
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x1
IIx2 -


x3


3x1


x2
I


x3
1


1


459.51


1,681.92


605.73


3x1


459.51


1.681.92


605.73 (cquivalance of matrices)


434 EC 215







New Gross - Flow Table
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x = (I - A)-Id


436 EC215







Xij = a.. Xj,
13


F( 437
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-
I


\
UEing Sector I


\
I ,I1 III I


Final
Total Output


Producing Sector
I Demand


I
I
1


I 300  200 80 I 420 1,000


II 200 0 200 f 100 500


IIII 100 150 40
f


1 1 3 400


s--------.-----u - - - - - + - - - - - -


Primary Inputs 400 150 80 I  , GNP : 630
I


Total Inputs 1,000 500 400


-


4 3 9
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