 Collinearity 

 คือสภาพที่เกิดสหสัมพันธ์ ( Correlation) กันเองระหว่างตัวแปรอิสระในระดับค่อนข้างสูง เมื่อทำการวิเคราะห์ Multiple linear regressions เพื่อให้ท่านผู้อ่านเห็นภาพ ผู้เขียนขอยกตัวอย่างการเก็บข้อมูลเพื่อทำการศึกษาในเรื่องอัตราการเสียชีวิตของทารกตั้งแต่แรกเกิดไปถึงระยะเวลา 3 สัปดาห์หลังคลอด โดยมีการระบุตัวแปรอิสระใน Regression model ดังต่อไปนี้
 อัตราการเสียชีวิตหลังคลอดของทารก ขึ้นอยู่กับระยะเวลาตั้งครรภ์ (สัปดาห์) และ น้ำหนักทารกแรกเกิด(กก.)
 ท่านลองสังเกตดูดีๆจะพบว่าในความเป็นจริงแล้ว ระยะเวลาที่อยู่ในครรภ์มารดาก่อนคลอดของทารกที่สั้นเกินไป นอกจากจะเป็นสาเหตุที่ทำให้อัตราการเสียชีวิตหลังคลอดสูงแล้ว ยังเป็นสาเหตุที่ทำให้ทารกแรกเกิดมีน้ำหนักน้อยกว่ามาตรฐานอีกด้วย  ครั้นผู้ทำการวิจัยจะสรุปว่าน้ำหนักของทารกเป็นหนึ่งในสาเหตุของการเสียชีวิตของทารกหลังคลอดก็สรุปไม่ได้เต็มปากนัก เพราะระยะเวลาที่ทารกอยู่ในครรภ์ก็เป็นเหตุให้น้ำหนักทารกต่ำกว่าเกณฑ์มาตรฐานด้วย ครั้นจะเลือกเอาตัวแปร ระยะเวลาที่ทารกอยู่ในครรภ์ เป็นตัวแปรอิสระเพียงตัวเดียว ในความเป็นจริงก็จะมีกรณีที่อายุครรภ์ได้ตามเกณฑ์มาตรฐาน แต่น้ำหนักทารกไม่ได้มาตรฐานก็มี หรืออายุครรภ์น้อยกว่าเกณฑ์มาตรฐานแต่น้ำหนักได้มาตรฐานก็มีเช่นกัน ถ้าสมมติผู้ทำการวิจัยเลือกใช้ Model ที่มีตัวแปรอิสระสองตัวอย่างที่ว่านี้ ก็จะเกิดสภาพที่เรียกว่ามีสหสัมพันธ์กัน ระหว่างตัวแปร ระยะเวลาตั้งครรภ์ (สัปดาห์) และ น้ำหนักทารกแรกเกิด (กก.)  ค่อนข้างสูง ที่เราเรียกว่า Collinearity
           หรืออีกตัวอย่างหนึ่ง เรารู้ว่าอัตราสิ้นเปลืองน้ำมันของรถยนต์ขึ้นอยู่กับตัวแปรอิสระหลายตัวคือ ขนาดของเครื่องยนต์ ความเร็วที่ใช้ขับขี่ น้ำหนักบรรทุกและสัมประสิทธ์ความเสียดทานระหว่างยางล้อรถกับผิวถนน (เป็นต้น) เราพบว่ายิ่งน้ำหนักบรรทุกมากขึ้นเท่าใด ค่าสัมประสิทธ์ความเสียดทานระหว่างยางล้อรถกับผิวถนนก็จะมากขึ้น   ลักษณะเช่นนี้คือการมีสหสัมพันธ์ระหว่างตัวแปรน้ำหนักบรรทุกและสัมประสิทธ์ความเสียดทานระหว่างยางล้อรถกับผิวถนน แล้วยังไปเกิดสหสัมพันธ์กับความเร็วรถยนต์อีกด้วย วนเวียนกันหลายความสัมพันธ์ ลักษณะเช่นนี้จะเรียกว่า Multicollinearity คือมีสหสัมพันธ์กันเองระหว่างตัวแปรอิสระมากกว่า 2 ตัวขึ้นไป นั่นเอง
 Collinearity หรือ Multicollinearity ถึงแม้จะไม่ได้ทำให้ Model นั้นใช้ Predict ตัวแปรตามไม่ได้เลยก็ตาม แต่ปัญหาจะเกิดที่การจะควบคุมตัวแปรอิสระให้เป็นไปตาม Model จะไม่ใช่เรื่องงายอีกต่อไป ลักษณะเช่นนี้เราเรียกว่ามีปัญหา Reliability ของ Model คือลักษณะที่ใช้พยากรณ์แล้วจะได้ค่าตัวแปรตาม ไม่เหมือนเดิมตลอดเวลา ขึ้นอยู่กับสภาวะของตัวแปรอิสระที่มีสหสัมพันธ์กันด้วย เพราะนอกจากตัวแปรตามจะเปลี่ยนแปลงตามตัวแปรอิสระที่เปลี่ยนไปแล้ว ตัวแปรอิสระบางตัวยังเปลี่ยนแปลงโดยขึ้นอยู่กับตัวแปรอิสระตัวอื่นๆ อีกขั้น เลยเกิดความไม่มีเสถียรภาพของ Model ในต่างเวลากัน  
ตัวอย่าง ถ้ามีข้อมูลดังในตารางและจะวิเคราะห์โดยใช้ Multiple regression ให้พิจารณา Multicollinearity
	Y
	X1
	X2
	X3
	X4

	125
	13
	18
	25
	11

	158
	39
	18
	39
	30

	207
	52
	50
	62
	43

	182
	42
	43
	50
	29

	196
	50
	37
	65
	46

	175
	44
	29
	59
	32

	145
	11
	27
	24
	14

	144
	22
	23
	31
	17

	160
	30
	18
	34
	22

	175
	51
	31
	58
	30

	151
	27
	25
	29
	21

	161
	41
	22
	53
	22

	200
	51
	52
	75
	36

	173
	37
	36
	44
	27

	175
	43
	38
	37
	20

	162
	43
	28
	45
	16

	155
	38
	19
	40
	18

	230
	62
	56
	75
	50

	162
	28
	30
	36
	20

	153
	30
	25
	41
	23


ตารางที่ 1 ข้อมูลที่บันทึกไว้ก่อนทำการวิเคราะห์
	SUMMARY OUTPUT
	
	
	
	

	
	
	
	
	
	

	Regression Statistics
	
	
	
	

	Multiple R
	0.987
	
	
	
	

	R Square
	0.974
	
	
	
	

	Adjusted R Square
	0.968
	
	
	
	

	Standard Error
	4.420
	
	
	
	

	Observations
	20
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	4
	11127.940
	2781.985
	142.418
	0.000

	Residual
	15
	293.010
	19.534
	
	

	Total
	19
	11420.950
	 
	 
	 

	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	

	Intercept
	99.513
	3.313
	30.037
	0.0000
	

	X Variable 1
	0.677
	0.183
	3.706
	0.0021
	

	X Variable 2
	0.925
	0.138
	6.722
	0.0000
	

	X Variable 3
	-0.147
	0.188
	-0.781
	0.4471
	

	X Variable 4
	0.845
	0.202
	4.192
	0.0008
	


ตารางที่ 2 ผลการวิเคราะห์ Multiple regression โดยโปรแกรม Excel
จะรู้ได้อย่างไรว่าเกิด Collinearity หรือ Multicollinearity ขึ้นแล้วเมื่อเราทำการวิเคราะห์ข้อมูลโดย Multiple regression
วิธีที่ 1 ง่ายที่สุดคือดูจากค่า F- Significane ของ Model (Regression) จากตาราง ANOVA และค่าทดสอบทางสถิติของสัมประสิทธิ์ตัวแปรอิสระแต่ละตัว โดยที่หาก F-Significane น้อยกว่า  (0.05) แปลว่า Regression model ดังกล่าวมีค่านัยสำคัญ แต่ถ้าค่าทดสอบทางสถิติของสัมประสิทธิ์ตัวแปรอิสระทั้งหมด หรือบางตัวไม่มีนัยสำคัญ (P-Value มากกว่า  ) แปลว่ามีโอกาสเกิด Collinearity ระหว่างตัวแปรอิสระอย่างมากทีเดียว จากตารางที่ 2 เมื่อวิเคราะห์ Multiple linear regression โดยโปรแกรม Excel ตามขั้นตอนปกติ จะพบว่าค่า F-Significance บ่งบอกว่า Regression model มีนัยสำคัญ แต่เมื่อดู P-Value ของ X3 บ่งบอกว่า X3 ไม่มีนัยสำคัญต่อ Regression model เลยหรือบอกว่า ไม่จำเป็นต้องมี X3 เลยก็ได้  ลักษณะเช่นนี้คือมีโอกาสเกิด Collinearity สูงมาก
จริงหรือที่ไม่จำเป็นต้องมี X3 ใน Model ที่ได้
วิธีที่ 2 ใช้ Scatter plot ระหว่างตัวแปรอิสระทุกกคู่ จากรูปที่ 1 จะพบว่า คู่ X3,X4 คู่ X1,X3 และคู่ X1,X4 มีความสัมพันธ์กันอย่างมากทีเดียว ในขณะที่คู่อื่นๆที่เหลือก็่มีความสัมพันธ์เชิงเส้นต่อกันเองพอสมควรทีเดียว โดยดูจากแนวการเรียงตัวของจุด กราฟที่ได้บ่งบอกว่าเกิด Multicollinearity ขึ้นแล้ว
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รูปที่ 1 ตัวอย่าง Scatter plot ระหว่างตัวแปรอิสระ 6 คู่
วิธีที่ 3 ทดสอบหาค่าสหสัมพันธ์ระหว่างตัวแปรอิสระแต่ละตัวกับตัวแปรตามและกับตัวแปรอิสระตัวอื่นๆ 
	 
	Y
	X1
	X2
	X3

	X1
	0.887
	 
	 
	 

	X2
	0.896
	0.687
	 
	 

	X3
	0.892
	0.905
	0.754
	 

	X4
	0.916
	0.819
	0.744
	0.871


ตารางที่ 3 Matrix ค่าสหสัมพันธ์ของทั้งตัวแปรตามและตัวแปรอิสระ
เมื่อใช้โปรแกรมคอมพิวเตอร์ วิเคราะห์จะได้ค่าสหสัมพันธ์ ( Pearson correlation : r ) ดังตารางที่ 3 ตัวแปรอิสระทุกตัวมีความสัมพันธ์กับตัวแปรตาม โดยดูได้จากที่ค่าต่ำที่สุดก็ 0.887  (Y กับ X1) แล้ว ในขณะที่ ค่าสหสัมพันธ์ระหว่างคู่ตัวแปรอิสระเองก็ มีค่ามากตั้งแต่ 0.687 (X1 กับ X2) ขึ้นไปเลยทีเดียว ซึ่งถือว่าสูงมาก ยืนยันได้ว่าเกิด Multicollinearity ใน Regression model นี้ ทั้งๆที่จากตารางที่ 1 เราพบว่า X3 ไม่มีนัยสำคัญ แต่ค่าจากตารางที่ 3 บ่งบอกว่า X3 มีความสัมพันธ์กับ Y ในระดับที่สูงมาก 
ค่าเท่าใดถึงจะถือว่ามี Collinearity โดยทั่วไปเราจะเปรียบเทียบค่าสหสัมพันธ์ระหว่าง X นั้นๆ กับ Y ถ้าน้อยกว่าเมื่อเทียบกับค่าสหสัมพันธ์กับ X ตัวอื่นๆ แสดงว่ามีโอกาสเกิด Collinearity สูง
วิธีที่ 4 วัดระดับ Multicollinearity ด้วยค่า  Variance Inflation Factor ( VIF )
เริ่มต้นเราพิจารณาค่า Variance ของค่าสัมประสิทธิ์แต่ละตัวแปรอิสระตามสมการ
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เราจะเปลี่ยนการหา Regression model ใหม่ โดยแยกค่า Y ออกไป แล้วเปลี่ยน X หนึ่งตัวให้เป็น Y แทนชั่วคราว แล้วทำการวิเคราะห์หา Regression model ระหว่าง X ที่เปลี่ยนมามีฐานะเป็น Y ชั่วคราว กับ X อื่นๆที่เหลือ แล้วนำค่า R2 (un-adjusted) ที่ได้มาคำนวณหาค่า Variance ของค่าสัมประสิทธ์ แล้วก็เปลี่ยน X ตัวอื่นๆมาเป็น Y ชั่วคราวแทนบ้าง หาค่า Un-adjusted R2 ของแต่ละ X และคำนวณหาค่า Variance ของค่าสัมประสิทธ์ จนครบทุก X 
ถ้าสมมติว่าไม่มีความสัมพันธ์กันเลยระหว่าง X ที่ถูกเปลี่ยนมาเป็น Y ชั่วคราว กับ X ที่เหลืออื่นๆ ค่า Un-adjusted R2 จะเท่ากับ 0 นั่นคือจะเหลือ
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แสดงว่าค่า Variance ของค่าสัมประสิทธ์ตัวนั้นๆจะเพิ่มมากขึ้น (เฟ้อ) กว่าที่เป็นอยู่นี้หรือไม่ ขึ้นอยู่กับระดับความสัมพันธ์ของ X ตัวนั้น(ที่เปลี่ยนมามีฐานะเป็น Y ชั่วคราว) กับ X อื่นๆที่เหลือ จะมากน้อยเพียงใด เราเลยเรียกเทอมนี้ว่า ตัวชี้วัดความเฟ้อ ของ Variance ของค่าสัมประสิทธ์ หรือ Variance Inflation Factor (VIF) มีสมการดังนี้
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จากตารางที่ 1 เมื่อเราให้ X1 มีฐานะเป็นตัวแปรตาม และ X2,X3 และ X4 เป็นตัวแปรอิสระ เมื่อวิเคราะห์ด้วยวิธี Multiple linear regression จะได้ดังต่อไปนี้
	SUMMARY OUTPUT
	
	
	
	

	
	
	
	
	
	

	Regression Statistics
	
	
	
	

	Multiple R
	0.908
	
	
	
	

	R Square
	0.824
	
	
	
	

	Adjusted R Square
	0.791
	
	
	
	

	Standard Error
	6.050
	
	
	
	

	Observations
	20
	
	
	
	

	
	
	
	
	
	

	ANOVA
	
	
	
	
	

	 
	df
	SS
	MS
	F
	Significance F

	Regression
	3
	2738.591
	912.864
	24.941
	0.000

	Residual
	16
	585.609
	36.601
	 
	 

	Total
	19
	3324.200
	 
	 
	 

	
	
	
	
	
	

	 
	Coefficients
	Standard Error
	t Stat
	P-value
	

	Intercept
	2.376
	4.496
	0.529
	0.604
	

	X2
	-0.017
	0.188
	-0.091
	0.928
	

	X3
	0.685
	0.192
	3.559
	0.003
	

	X4
	0.163
	0.273
	0.599
	0.558
	


ตารางที่ 4 ผลการวิเคราะห์ Multiple regression โดยโปรแกรม Excel เมื่อ X1 เป็นตัวแปรตาม
จากตารางที่ 4 จะได้
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เมื่อดูค่า F-Significance และค่า P-Value ของ X2 และ X4 จะพบว่า Model ที่เกิดขึ้นใหม่นี้ยังเกิด Multicollinearity อยู่และ X3 กลายเป็นตัวแปรอิสระที่มีค่านัยสำคัญ ทั้งๆที่ครั้งแรกไม่เป็นเช่นนี้ 
หากทำการวิเคราะห์ Multiple linear regression เมื่อเปลี่ยน X2,X3และ X4 ไปเป็นตัวแปรตาม แล้วคำนวณหาค่า Variance Inflation Factor จะได้ค่าดังตารางต่อไปนี้
	ตัวแปรอิสระ
	VIF

	X1
	5.68

	X2
	2.50

	X3
	8.25

	X4
	4.55


ตารางที่ 5 ค่า VIF ของแต่ละตัวแปรอิสระ 
 VIF เท่าไหร่ ถึงจะถือว่า Multicollinearity ใน Model นั้นจะเกิดปัญหา
เป็นเรื่องจริงที่ว่า ไม่มีการระบุว่า VIF เท่าใด Multicollinearity จะสร้างปัญหาให้กับการนำ Regression model ที่ได้เมื่อนำไปใช้พยากรณ์ค่าตัวแปรตาม แม้แต่จะสรุปว่าเมื่อเกิด Multicollinearity แล้ว จะแก้ปัญหาอย่างไร จะเกิดความผิดพลาดอะไรบ้าง จะยังสามารถใช้ Model นั้นได้อยู่หรือไม่ ก็ไม่มีตำราที่ไหนเขียนหรือระบุเจาะจงไว้ คงต้องปล่อยให้ผู้ทำการวิเคราะห์ข้อมูลใช้วิจารณญาณส่วนตัวในการจะแก้ปัญหาหรือดำเนินการอย่างหนึ่งอย่างใดต่อไป ถึงแม้ว่าบางตำราจะบอกว่า VIF ตั้งแต่ 10 ขึ้นไป ถือว่า Multicollinearity อาจจะสร้างปัญหาต่อ Regression model ที่ได้ แต่อย่างไรก็ตาม แม้ต่ำกว่า 10 ก็ยังถือว่า สร้างปัญหาได้เช่นกัน
 จะทำอย่างไรเมื่อต้องเผชิญกับปัญหา Collinearity  หรือ Multicollinearity
วิธีที่ 1 ตัดตัวแปรที่มี Collinearity หรือ Multicollinearity ออกจากการวิเคราะห์หา Regression model จากตัวอย่างที่ผ่านมา พบว่า X3 เป็นตัวแปรที่สมควรตัดออกมากที่สุด ด้วยเหตุผลคือ
                  - ค่า VIF สูงที่สุด (8.25)
                  - ค่าสหสัมพันธ์ของ X3 กับ X1 สูงกว่า ค่าสหสัมพันธ์ X3 กับ Y
                  - เมื่อวิเคราะห์ด้วย Multiple linear regression พบว่า ค่า P-Value ของสัมประสิทธิ์ของ X3 มากกว่า  แสดงว่า
                      X3 เป็นตัวแปรที่ควรตัดออกจาก Regression model  
วิธีที่ 2 รวมตัวแปรที่มี Collinearity กันให้เป็นตัวแปรใหม่ที่ยังให้ความสัมพันธ์กับตัวแปรตามอยู่ เช่นตัวอย่างต่อไปนี้
               - ส่วนสูงและน้ำหนัก เป็นตัวแปรอิสระที่มี Correlation กันค่อนข้างมาก เราอาจจะเปลี่ยนไปใช้ตัวแปรใหม่คือ ้ดัชนีมวลกาย แทน ก็จะตัดปัญหา Collinearity ได้
               - ความสูงกับความกว้างของสิ่งของที่เรากำลังศึกษา ถ้ามี Correlation กันค่อนข้างมาก เราอาจจะเปลี่ยนไปใช้ตัวแปรปริมาตร แทน
 แต่ก็ไม่ใช่ทุกตัวแปรจะรวมกันได้ อย่างเช่น ระยะเวลาที่อยู่ในครรภ์มารดา (สัปดาห์) และ น้ำหนักทารกแรกเกิด(กก.) ถึงแม้จะมี Correlation กันมาก แต่หากตัดตัวแปรใดตัวแปรหนึ่งออก อาจจะทำให้ Regression model ที่ได้ผิดพลาดมากกว่าที่มีสองตัวแปรนี้อยู่ก็เป็นได้ 
วิธีที่ 3 ใช้วิธีวิเคราะห์ข้อมูลแบบอื่นที่ไม่สนใจ Collinearity หรือ Multicollinearity เลย เช่น Ridge regression แต่ก็เจอกับความยุ่งยากในการวิเคราะห์มากขึ้นไปอีก เพราะใช้คณิตศาสตร์ค่อนข้างมาก
วิธีที่ 4 ยอมรับว่าต้องมี Collinearity หรือ Multicollinearity แน่ๆ เพราะบางครั้งเราก็ไม่มีทางเลือกที่ดีกว่านี้ ในทางปฏิบัติการที่ Regression model มี Collinearity หรือ Multicollinearity แต่ก็ยังสามารถใช้ในการพยากรณ์ตัวแปรตามได้อยู่ เพียงแต่ผู้ใช้ต้องตรวจสอบความถูกต้อง เพิ่มการวิเคราะห์ข้อมูลมากขึ้น
Multicollinearity
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Multicollinearity is a statistical phenomenon in which two or more predictor variables in a multiple regression model are highly correlated. In this situation the coefficient estimates may change erratically in response to small changes in the model or the data. Multicollinearity does not reduce the predictive power or reliability of the model as a whole; it only affects calculations regarding individual predictors. That is, a multiple regression model with correlated predictors can indicate how well the entire bundle of predictors predicts the outcome variable, but it may not give valid results about any individual predictor, or about which predictors are redundant with others.
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[edit] Definition

Collinearity is a linear relationship between two explanatory variables. Two variables are collinear if there is an exact linear relationship between the two. For example, X1 and X2 are collinear if

X1 = λX2
Multicollinearity refers to a situation in which two or more explanatory variables in a multiple regression model are highly correlated. We have perfect multicollinearity if the correlation between two independent variables is equal to 1 or -1. In practice, we rarely face perfect multicollinearity in a data set. More commonly, the issue of multicollinearity arises when there is a high degree of correlation (either positive or negative) between two or more independent variables.

Mathematically, a set of variables is collinear if there exists one or more linear relationships among the variables. For example, we may have:
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where λi are constants and Xi are explanatory variables. We can explore the issue caused by multicollinearity by examining the parameter estimates for the parameters of the multiple regression equation:
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The ordinary least squares estimates involve inverting the matrix

XTX
where
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If there is a linear relationship among the independent variables, the rank of X is less than k+1, and the matrix XTX will not be invertible.

In most applications, perfect multicollinearity is unlikely. A analyst is more likely to face near multicollinearity. For example, suppose you add a stochastic error term vi to the equation above such that
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In this case, there is no exact linear relationship among the variables, but the Xi variables are nearly perfectly correlated. In this case, the matrix XT X is invertible, but is ill-conditioned.

[edit] Detection of multicollinearity

Indicators that multicollinearity may be present in a model:

1) Large changes in the estimated regression coefficients when a predictor variable is added or deleted

2) Insignificant regression coefficients for the affected variables in the multiple regression, but a rejection of the hypothesis that those coefficients are insignificant as a group (using a F-test)

3) Large changes in the estimated regression coefficients when an observation is added or deleted

Some authors have suggested a formal detection-tolerance or the variance inflation factor (VIF) for multicollinearity:
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A tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a multicollinearity problem (but see O'Brien 2007).[1]
The standard measure of ill-conditioning in a matrix is the condition index. It will indicate that the inversion of the matrix is numerically unstable with finite-precision numbers ( standard computer floats and doubles ). This indicates the potential sensitivity of the computed inverse to small changes in the original matrix, i.e. is your data approximate to one or two decimal places or is it really precise to 25 digits?

[edit] Consequences of multicollinearity

In the presence of multicollinearity, the estimate of one variable's impact on y while controlling for the others tends to be less precise than if predictors were uncorrelated with one another. The usual interpretation of a regression coefficient is that it provides an estimate of the effect of a one unit change in an independent variable, X1, holding the other variables constant. If X1 is highly correlated with another independent variable, X2, in the given data set, then we only have observations for which X1 and X2 have a particular relationship (either positive or negative). We don't have observations for which X1 changes independently of X2, so we have an imprecise estimate of the effect of independent changes in X1.

In some sense, the collinear variables contain the same information about the dependent variable. If nominally "different" measures actually quantify the same phenomenon then they are redundant. Alternatively, if the variables are accorded different names and perhaps employ different numeric measurement scales but are highly correlated with each other, then they suffer from redundancy.

One of the features of multicollinearity is that the standard errors of the affected coefficients tend to be large. In that case, the test of the hypothesis that the coefficient is equal to zero against the alternative that it is not equal to zero leads to a failure to reject the null hypothesis. However, if a simple linear regression of the dependent variable on this explanatory variable is estimated, the coefficient will be found to be significant; specifically, the analyst will reject the hypothesis that the coefficient is not significant. In the presence of multicollinearity, an analyst might falsely conclude that there is no linear relationship between an independent and a dependent variable.

A principal danger of such data redundancy is that of overfitting in regression analysis models. The best regression models are those in which the predictor variables each correlate highly with the dependent (outcome) variable but correlate at most only minimally with each other. Such a model is often called "low noise" and will be statistically robust (that is, it will predict reliably across numerous samples of variable sets drawn from the same statistical population).

See Multi-collinearity Variance Inflation and Orthogonalization in Regression by Dr. Alex Yu.

[edit] Remedy to multicollinearity

Multicollinearity does not actually bias results, it just produces large standard errors in the related independent variables. With enough data, these errors will be reduced.[1]
In a pure statistical sense multicollinearity does not bias the results, but if there are any other problems which could introduce bias multicollinearity can multiply ( by orders of magnitude ) the effects of that bias. More importantly, the usual use of regression is to take coefficients from the model and then apply them to other data. If the new data differs in any way from the data that was fitted you may introduce large errors in your predictions because the pattern of multicollinearity between the independent variables is different in your new data from the data you used for your estimates. Try seeing what happens if you use independent subsets of your data for estimation and apply those estimates to the whole data set. In the world of pure statistical theory you should have somewhat higher variance from the smaller datasets used for estimation, but the expectation of the coefficient values should be the same. Naturally, the observed coefficient values will vary, but look at how much they vary.

In addition, you may:

1) Leave the model as is, despite multicollinearity. The presence of multicollinearity doesn't affect the fitted model provided that the predictor variables follow the same pattern of multicollinearity as the data on which the regression model is based[unreliable source?][dubious – discuss].

2) Drop one of the variables. An explanatory variable may be dropped to produce a model with significant coefficients. However, you lose information (because you've dropped a variable). Omission of a relevant variable results in biased coefficient estimates for the remaining explanatory variables.

3) Obtain more data. This is the preferred solution. More data can produce more precise parameter estimates (with lower standard errors)[unreliable source?].[dubious – discuss]
4) Mean-center the predictor variables. Mathematically this has no effect on the results from a regression. However, it can be useful in overcoming problems arising from rounding and other computational steps if a carefully designed computer program is not used.

5) Standardize your independent variables. This may help reduce a false flagging of a condition index above 30.

Note: Multicollinearity does not impact the reliability of the forecast, but rather impacts the interpretation of the explanatory variables and the estimate results. As long as the collinear relationships in your independent variables remain stable over time, multicollinearity will not affect your forecast. If there is reason to believe that the collinear relationships do NOT remain stable over time, it is better to consider a technique like Ridge regression.

[edit] Multicollinearity in survival analysis

Multicollinearity may also represent a serious issue in survival analysis. The problem is that time-varying covariates may change their value over the time line of the study. A special procedure is recommended to assess the impact of multicollinearity on the results. See Van den Poel & Larivière (2004) for a detailed discussion.

[edit] Notes

1. ^ O'Brien, Robert M. 2007. "A Caution Regarding Rules of Thumb for Variance Inflation Factors," Quality and Quantity 41(5)673-690.

[edit] External links

· Multicollinearity and Maximum Entropy Leuven Estimator.
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